

picraft

This package provides an alternate Python API for Minecraft Pi edition [https://www.raspberrypi.org/documentation/usage/minecraft/README.md] on
the Raspberry Pi [http://www.raspberrypi.org/], or Raspberry Juice [http://www.stuffaboutcode.com/2014/10/minecraft-raspberryjuice-and-canarymod.html] on the PC for Python 2.7 (or above),
or Python 3.2 (or above).

Links

	The code is licensed under the BSD license [http://opensource.org/licenses/BSD-3-Clause]

	The source code [https://github.com/waveform80/picraft] can be obtained from GitHub, which also hosts the bug
tracker [https://github.com/waveform80/picraft/issues]

	The documentation [http://picraft.readthedocs.io/] (which includes installation, quick-start examples, and
lots of code recipes) can be read on ReadTheDocs

	Packages can be downloaded from PyPI [http://pypi.python.org/pypi/picraft/], but reading the installation
instructions is more likely to be useful

Table of Contents

	1. Installation

	2. Quick Start

	3. Recipes

	4. Turtle Graphics

	5. Vectors

	6. Conversion from mcpi

	7. Frequently Asked Questions

	8. API Reference

	9. API - The World class

	10. API - The Block class

	11. API - Vector, vector_range, etc.

	12. API - Events

	13. API - Connections and Batches

	14. API - Players

	15. API - Rendering

	16. API - Turtle

	17. API - Exceptions

	18. The Minecraft network protocol

	19. Change log

	20. License

Indices and tables

	Index

	Module Index

	Search Page

1. Installation

1.1. Raspbian installation

If you are using the Raspbian [http://www.raspbian.org/] distro, it is best to install picraft using
the system’s package manager: apt. This will ensure that picraft is easy to
keep up to date, and easy to remove should you wish to do so. It will also make
picraft available for all users on the system. To install picraft using apt
simply:

$ sudo apt-get update
$ sudo apt-get install python-picraft python3-picraft

To upgrade your installation when new releases are made you can simply use
apt’s normal upgrade procedure:

$ sudo apt-get update
$ sudo apt-get upgrade

If you ever need to remove your installation:

$ sudo apt-get remove python-picraft python3-picraft

1.2. Ubuntu installation

If you are using Ubuntu [http://ubuntu.com], it is best to install picraft from the author’s
PPA. This will ensure that picraft is easy to keep up to date, and easy to
remove should you wish to do so. It will also make picraft available for all
users on the system. To install picraft from the PPA:

$ sudo add-apt-repository ppa:waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-picraft python3-picraft

To upgrade your installation when new releases are made you can simply use
apt’s normal upgrade procedure:

$ sudo apt-get update
$ sudo apt-get upgrade

If you ever need to remove your installation:

$ sudo apt-get remove python-picraft python3-picraft

1.3. Windows installation

The following assumes you’re using a recent version of Python (like 3.5) which
comes with pip, and that you checked the option to “adjust PATH” when
installing Python.

Start a command window by pressing Win-R and entering “cmd”. At the
command prompt enter:

C:\Users\Dave> pip install picraft

To upgrade your installation when new releases are made:

C:\Users\Dave> pip install -U picraft

If you ever need to remove your installation:

C:\Users\Dave> pip uninstall picraft

2. Quick Start

Start a Minecraft game [https://www.raspberrypi.org/documentation/usage/minecraft/README.md] and start Python. First, we’ll connect Python to the
Minecraft world and post a message to the chat console:

>>> from picraft import *
>>> world = World()
>>> world.say('Hello, world!')

The World class is the usual starting point for picraft
scripts. It provides access to the blocks that make up the world, the players
within the world, methods to save and restore the state of the world, and the
ability to print things to the chat console.

Next, we can query where we’re standing with the
pos attribute of the
player attribute:

>>> world.player.pos
Vector(x=-2.49725, y=18.0, z=-4.21989)

This tells us that our character is standing at the 3-dimensional coordinates
-2.49, 18.0, -4.22 (approximately). In the Minecraft world, the X and Z
coordinates (the first and last) form the “ground plane”.

[image: _images/block_faces.svg]

In other words you, can think of X as going left to right, and Z as going
further to nearer. The Y axis represents height (it goes up and down). We can
find out our player’s coordinates rounded to the nearest block with the
tile_pos attribute:

>>> world.player.tile_pos
Vector(x=-3, y=18, z=-5)

We can make our character jump in the air by adding a certain amount
to the player’s Y coordinate. To do this we need to construct a
Vector with a positive Y value and add it to the
tile_pos attribute:

>>> world.player.tile_pos = world.player.tile_pos + Vector(y=5)

We can also use a Python short-hand for this:

>>> world.player.tile_pos += Vector(y=5)

This demonstrates one way of constructing a Vector.
We can also construct one by listing all 3 coordinates explicitly:

>>> Vector(y=5)
Vector(x=0, y=5, z=0)
>>> Vector(0, 5, 0)
Vector(x=0, y=5, z=0)

There are also several short-hands for the X, Y, and Z “unit vectors” (vectors
with a length of 1 aligned with each axis), and it’s worth noting that most
mathematical operations can be applied to vectors:

>>> Vector(y=1)
Vector(x=0, y=1, z=0)
>>> Y
Vector(x=0, y=1, z=0)
>>> 5*Y
Vector(x=0, y=5, z=0)

There’s also a short-hand for Vector (V), and another representing the origin
coordinates (O):

>>> V(y=1)
Vector(x=0, y=1, z=0)
>>> O
Vector(x=0, y=0, z=0)

We can use the blocks attribute to discover the
type of each block in the world. For example, we can find out what sort of
block we’re currently standing on:

>>> world.blocks[world.player.tile_pos - Y]
<Block "grass" id=2 data=0>

We can assign values to this property to change the sort of block we’re
standing on. In order to do this we need to construct a new
Block instance which can be done by specifying the
id number, or by name:

>>> Block(1)
<Block "stone" id=1 data=0>
>>> Block('stone')
<Block "stone" id=1 data=0>

Now we’ll change the block beneath our feet:

>>> world.blocks[world.player.tile_pos - Y] = Block('stone')

We can query the state of many blocks surrounding us by providing a vector
slice to the blocks attribute. To make things
a little easier we’ll store the base position first:

>>> p = world.player.tile_pos - Y
>>> world.blocks[p - Vector(1, 0, 1):p + Vector(2, 1, 2)]
[<Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "stone" id=1 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>]

Note that the range provided (as with all ranges in Python) is half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html],
which is to say that the lower end of the range is inclusive while the upper
end is exclusive. You can see this explicitly with the
vector_range() function:

>>> p
Vector(x=-2, y=14, z=3)
>>> list(vector_range(p - Vector(1, 0, 1), p + Vector(2, 1, 2)))
[Vector(x=-3, y=14, z=2),
 Vector(x=-3, y=14, z=3),
 Vector(x=-3, y=14, z=4),
 Vector(x=-2, y=14, z=2),
 Vector(x=-2, y=14, z=3),
 Vector(x=-2, y=14, z=4),
 Vector(x=-1, y=14, z=2),
 Vector(x=-1, y=14, z=3),
 Vector(x=-1, y=14, z=4)]

This may seem a clunky way of specifying a range and, in the manner shown above
it is. However, most standard arithmetic operations applied to a vector are
applied to all its elements:

>>> Vector()
Vector(x=0, y=0, z=0)
>>> Vector() + 1
Vector(x=1, y=1, z=1)
>>> 2 * (Vector() + 1)
Vector(x=2, y=2, z=2)

This makes construction of such ranges or slices considerably easier. For
example, to construct a vertical range of vectors from the origin (0, 0, 0) to
(0, 10, 0) we first assign the origin to p which we use for the start of
the range, then add 10*Y to it, and finally add one to compensate
for the half-open nature of the range:

>>> p = Vector()
>>> list(vector_range(p, p + (10*Y) + 1))
[Vector(x=0, y=0, z=0),
 Vector(x=0, y=1, z=0),
 Vector(x=0, y=2, z=0),
 Vector(x=0, y=3, z=0),
 Vector(x=0, y=4, z=0),
 Vector(x=0, y=5, z=0),
 Vector(x=0, y=6, z=0),
 Vector(x=0, y=7, z=0),
 Vector(x=0, y=8, z=0),
 Vector(x=0, y=9, z=0),
 Vector(x=0, y=10, z=0)]

We can also re-write the example before this (the blocks surrounding the one
the player is standing on) in several different ways:

>>> p = world.player.tile_pos
>>> list(vector_range(p - 1, p + 2 - (2*Y)))
[Vector(x=-3, y=14, z=2),
 Vector(x=-3, y=14, z=3),
 Vector(x=-3, y=14, z=4),
 Vector(x=-2, y=14, z=2),
 Vector(x=-2, y=14, z=3),
 Vector(x=-2, y=14, z=4),
 Vector(x=-1, y=14, z=2),
 Vector(x=-1, y=14, z=3),
 Vector(x=-1, y=14, z=4)]

We can change the state of many blocks at once similarly by assigning a new
Block object to a slice of blocks:

>>> p = world.player.tile_pos
>>> world.blocks[p - 1:p + 2 - (2*Y)] = Block('stone')

This is a relatively quick operation, as it only involves a single network
call. However, re-writing the state of multiple blocks with different values
is more time consuming:

>>> world.blocks[p - 1:p + 2 - (2*Y)] = [
... Block('wool', data=i) for i in range(9)]

You should notice that the example above takes longer to process. This can be
accomplished considerably more quickly by batching multiple requests together:

>>> world.blocks[p - 1:p + 2 - (2*Y)] = Block('stone')
>>> with world.connection.batch_start():
... world.blocks[p - 1:p + 2 - (2*Y)] = [
... Block('wool', data=i) for i in range(9)]

Finally, the state of the Minecraft world can be saved and restored easily with
the checkpoint object:

>>> world.checkpoint.save()
>>> world.blocks[p - 1:p + 2 - (2*Y)] = Block('stone')
>>> world.checkpoint.restore()

In order to understand vectors, it can help to visualize them. Pick a
relatively open area in the game world.

[image: _images/quick1.png]
We’ll save the vector of your player’s position as p then add 3 to it. This
moves the vector 3 along each axis (X, Y, and Z). Next, we’ll make the block
at p into stone:

>>> p = world.player.tile_pos
>>> p = p + 3
>>> world.blocks[p] = Block('stone')

[image: _images/quick2.png]
Now we’ll explore vector slices a bit by making a line along X+5 into stone.
Remember that slices (and ranges) are half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html] so we need to add an extra
1 to the end of the slice:

>>> world.blocks[p:p + Vector(x=5) + 1] = Block('stone')

[image: _images/quick3.png]
In order to visualize the three different axes of vectors we’ll now draw them
each. Here we also use a capability of the Block
constructor to create a block with a particular color:

>>> world.blocks[p:p + (5*X) + 1] = Block('#ff0000')
>>> world.blocks[p:p + (5*Y) + 1] = Block('#00ff00')
>>> world.blocks[p:p + (5*Z) + 1] = Block('#0000ff')

[image: _images/quick4.png]
Finally, we can use a vector range to demonstrate patterns. Firstly we wipe
out our axes by setting the entire block to “air”. Then we define a vector
range over the same block with a step of 2, and iterate over each vector within
setting it to diamond:

>>> world.blocks[p:p + 6] = Block('air')
>>> r = vector_range(p, p + 6, Vector() + 2)
>>> for rv in r:
... world.blocks[rv] = Block('diamond_block')

Once again, we can make use of a batch to speed this up:

>>> world.blocks[p:p + 6] = Block('air')
>>> with world.connection.batch_start():
... for rv in r:
... world.blocks[rv] = Block('diamond_block')

[image: _images/quick5.png]

3. Recipes

This section introduces a variety of “recipes”: small scripts that demonstrate
how to achieve something using the picraft library. Suggestions for new recipes
are gratefully received: please e-mail the author!

3.1. Player Position

The player’s position can be easily queried with the
pos attribute. The value is a
Vector. For example, on the command line:

>>> world = World()
>>> world.player.pos
Vector(x=2.3, y=1.1, z=-0.81)

Teleporting the player is as simple as assigning a new vector to the player
position. Here we teleport the player into the air by adding 50 to the Y-axis
of the player’s current position (remember that in the Minecraft world, the
Y-axis goes up/down):

>>> world.player.pos = world.player.pos + Vector(y=50)

Or we can use a bit of Python short-hand for this:

>>> world.player.pos += Vector(y=50)

If you want the player position to the nearest block use the
tile_pos instead:

>>> world.player.tile_pos
Vector(x=2, y=1, z=-1)

[image: _images/dont_look_down.png]

3.2. Changing the World

The state of blocks in the world can be queried and changed by reading and
writing to the blocks attribute. This is indexed
with a Vector (or slice of vectors) and returns or
accepts a Block instance. For example, on the command
line we can find out the type of block we’re standing on like so:

>>> world = World()
>>> p = world.player.tile_pos
>>> world.blocks[p - Y]
<Block "dirt" id=3 data=0>

We can modify the block we’re standing on by assigning a new block type to it:

>>> world.blocks[p - Y] = Block('stone')

We can modify several blocks surrounding the one we’re standing on by assigning
to a slice of blocks. Remember that Python slices are half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html] so the
easiest way to specify the slice is to specify the start and the end
inclusively and then simply add one to the end. Here we’ll change p to
represent the vector of the block beneath our feet, then set it and all
immediately surrounding blocks to stone:

>>> p -= Y
>>> world.blocks[p - (X + Z):p + (X + Z) + 1] = Block('stone')

[image: _images/blocks.png]

3.3. Auto Bridge

This recipe (and several others in this chapter) was shamelessly stolen from
Martin O’Hanlon’s excellent site [http://www.stuffaboutcode.com/] which includes lots of recipes (although at
the time of writing they’re all for the mcpi API). In this case the original
script can be found in Martin’s auto-bridge project [http://www.stuffaboutcode.com/2013/02/raspberry-pi-minecraft-auto-bridge.html].

The script tracks the position and likely future position of the player as
they walk through the world. If the script detects the player is about to walk
onto air it changes the block to diamond:

from __future__ import unicode_literals

import time
from picraft import World, Vector, Block, Y

world = World()
last_pos = None
while True:
 this_pos = world.player.pos
 if last_pos is not None:
 # Has the player moved more than 0.1 units in a horizontal direction?
 movement = (this_pos - last_pos).replace(y=0.0)
 if movement.magnitude > 0.1:
 # Find the next tile they're going to step on
 next_pos = (this_pos + movement.unit).floor() - Y
 world.blocks[next_pos] = Block('diamond_block')
 last_pos = this_pos
 time.sleep(0.01)

Nice, but we can do better. The following script enhances the recipe so that
only blocks which are air are changed to diamond, and the bridge “cleans up”
after itself:

from __future__ import unicode_literals

import time
from picraft import World, Vector, Block, Y

world = World()
world.say('Auto-bridge active')
try:
 bridge = []
 last_pos = None
 while True:
 this_pos = world.player.pos
 if last_pos is not None:
 # Has the player moved more than 0.1 units in a horizontal direction?
 movement = (this_pos - last_pos).replace(y=0.0)
 if movement.magnitude > 0.1:
 # Find the next tile they're going to step on
 next_pos = (this_pos + movement.unit).floor() - Y
 if world.blocks[next_pos] == Block('air'):
 with world.connection.batch_start():
 bridge.append(next_pos)
 world.blocks[next_pos] = Block('diamond_block')
 while len(bridge) > 10:
 world.blocks[bridge.pop(0)] = Block('air')
 last_pos = this_pos
 time.sleep(0.01)
except KeyboardInterrupt:
 world.say('Auto-bridge deactivated')
 with world.connection.batch_start():
 while bridge:
 world.blocks[bridge.pop(0)] = Block('air')

The script uses a list to keep track of the blocks which are present in the
bridge, popping off old blocks when the bridge has more than 10 blocks in it.
This list is also used to “clean up” the bridge when the script exits.

[image: _images/bridge.png]

3.4. Events

The auto-bridge recipe above demonstrates a form of reacting to changes, in
that case player position changing.

However, the picraft library provides two different ways of working with
events; you can select whichever one suits your particular application. The
basic way of reacting to events is to periodically “poll” Minecraft for them
(with the poll() method). This will return a list
of all events that occurred since the last time your script polled the server.
For example, the following script prints a message to the console when you hit
a block, detailing the block’s coordinates and the face that you hit:

from time import sleep
from picraft import World

world = World()

while True:
 for event in world.events.poll():
 world.say('Player %d hit face %s of block at %d,%d,%d' % (
 event.player.player_id, event.face,
 event.pos.x, event.pos.y, event.pos.z))
 sleep(0.1)

This is similar to the method used by the official mcpi library. It’s fine for
simple scripts but you can probably see how more complex scripts that check
exactly which block has been hit start to involve long series of if
statements which look a bit ugly in code. The following script creates a couple
of blocks near the player on startup: a black block (which ends the script when
hit), and a white block (which makes multi-colored blocks fall from the sky):

from random import randint
from time import sleep
from picraft import World, X, Y, Z, Vector, Block

world = World()

p = world.player.tile_pos
white_pos = p - 2 * X
black_pos = p - 3 * X

world.blocks[white_pos] = Block('#ffffff')
world.blocks[black_pos] = Block('#000000')

running = True
while running:
 for event in world.events.poll():
 if event.pos == white_pos:
 rain = Vector(p.x + randint(-10, 10), p.y + 20, p.z + randint(-10, 10))
 rain_end = world.height[rain]
 world.blocks[rain] = Block('wool', randint(1, 15))
 while rain != rain_end:
 with world.connection.batch_start():
 world.blocks[rain] = Block('air')
 rain -= Y
 world.blocks[rain] = Block('wool', randint(1, 15))
 sleep(0.1)
 elif event.pos == black_pos:
 running = False

The alternate method of event handling in picraft is to rely on picraft’s
built-in event loop. This involves “tagging” functions which will react to
block hits with the on_block_hit() decorator, then
running the main_loop() method. This causes
picraft to continually poll the server and call the tagged functions when their
criteria are matched by a block-hit event:

from random import randint
from time import sleep
from picraft import World, X, Y, Z, Vector, Block

world = World()

p = world.player.tile_pos
white_pos = p - 2 * X
black_pos = p - 3 * X

world.blocks[white_pos] = Block('#ffffff')
world.blocks[black_pos] = Block('#000000')

@world.events.on_block_hit(pos=black_pos)
def stop_script(event):
 world.connection.close()

@world.events.on_block_hit(pos=white_pos)
def make_it_rain(event):
 rain = Vector(p.x + randint(-10, 10), p.y + 20, p.z + randint(-10, 10))
 rain_end = world.height[rain]
 world.blocks[rain] = Block('wool', randint(1, 15))
 while rain != rain_end:
 with world.connection.batch_start():
 world.blocks[rain] = Block('air')
 rain -= Y
 world.blocks[rain] = Block('wool', randint(1, 15))
 sleep(0.1)

world.events.main_loop()

One advantage of this method (other than slightly cleaner code) is that event
handlers can easily be made multi-threaded (to run in parallel with each other)
simply by modifying the decorator used:

from random import randint
from time import sleep
from picraft import World, X, Y, Z, Vector, Block

world = World()

p = world.player.tile_pos
white_pos = p - 2 * X
black_pos = p - 3 * X

world.blocks[white_pos] = Block('#ffffff')
world.blocks[black_pos] = Block('#000000')

@world.events.on_block_hit(pos=black_pos)
def stop_script(event):
 world.connection.close()

@world.events.on_block_hit(pos=white_pos, thread=True)
def make_it_rain(event):
 rain = Vector(p.x + randint(-10, 10), p.y + 20, p.z + randint(-10, 10))
 rain_end = world.height[rain]
 world.blocks[rain] = Block('wool', randint(1, 15))
 while rain != rain_end:
 with world.connection.batch_start():
 world.blocks[rain] = Block('air')
 rain -= Y
 world.blocks[rain] = Block('wool', randint(1, 15))
 sleep(0.1)

world.events.main_loop()

Now you should find that the rain all falls simultaneously (more or less, given
the constraints of the Pi’s bandwidth!) when you hit the white block multiple
times.

[image: _images/rain.png]
You should also be aware that the picraft library supports a larger range of
events than mcpi. Specifically, it has events for player position changes, and
“idle” events. See track_players and
include_idle respectively.

3.5. Shapes

This recipe demonstrates drawing shapes with blocks in the Minecraft world. The
picraft library includes a couple of rudimentary routines for calculating the
points necessary for drawing lines:

	line() which can be used to calculate the positions
along a single line

	lines() which calculates the positions along a series
of lines

Here we will attempt to construct a script which draws each regular polygon
from an equilateral triangle up to a regular octagon. First we start by
defining a function which will generate the points of a regular polygon. This
is relatively simple: the interior angles of a polygon always add up to 180
degrees so the angle to turn each time is 180 divided by the number of sides.
Given an origin and a side-length it’s a simple matter to iterate over each
side generating the necessary point:

from __future__ import division

import math
from picraft import World, Vector, O, X, Y, Z, lines

def polygon(sides, center=O, radius=5):
 angle = 2 * math.pi / sides
 for side in range(sides):
 yield Vector(
 center.x + radius * math.cos(side * angle),
 center.y + radius * math.sin(side * angle))

print(list(polygon(3, center=3*Y)))
print(list(polygon(4, center=3*Y)))
print(list(polygon(5, center=3*Y)))

Next we need a function which will iterate over the number of sides for each
required polygon, using the lines() function to generate
the points required to draw the shape. Then it’s a simple matter to draw each
polygon in turn, wiping it before displaying the next one:

from __future__ import division

import math
from time import sleep
from picraft import World, Vector, Block, O, X, Y, Z, lines

def polygon(sides, center=O, radius=5):
 angle = 2 * math.pi / sides
 for side in range(sides):
 yield Vector(
 center.x + radius * math.cos(side * angle),
 center.y + radius * math.sin(side * angle),
 center.z).round()

def shapes(center=O):
 for sides in range(3, 9):
 yield lines(polygon(sides, center=center))

w = World()
for shape in shapes(w.player.tile_pos + 15*Y + 10*Z):
 # Copy the generator into a list so we can re-use
 # the coordinates
 shape = list(shape)
 # Draw the shape
 with w.connection.batch_start():
 for p in shape:
 w.blocks[p] = Block('gold_block')
 sleep(0.5)
 # Wipe the shape
 with w.connection.batch_start():
 for p in shape:
 w.blocks[p] = Block('air')

[image: _images/shapes.png]

3.6. Models

This recipe demonstrates drawing models defined by object files [https://en.wikipedia.org/wiki/Wavefront_.obj_file]. This is a
venerable file format from Alias|Wavefront [https://en.wikipedia.org/wiki/Alias_Systems_Corporation]. It’s a simple text-based format
that defines the vertices, faces, and other aspects of a model, including the
materials of the model. The picraft library includes a rudimentary parser and
renderer for this format (in the Model class) which
can be used to render such models as blocks in the Minecraft world.

Below is an example object file, which defines the walls and ceiling of a
house.

This is an object file describing a house. First we define the
required vertices with the "v" command, then reference these
from faces (with the "f" command). Negative indices in the "f"
command count back from the most recently defined vertices.

usemtl brick_block

g front-wall
v 0 0 0
v 8 0 0
v 8 3 0
v 0 3 0
v 3 0 0
v 5 0 0
v 3 2 0
v 5 2 0
f -8 -4 -2 -1 -3 -7 -6 -5

g back-wall
v 0 0 8
v 8 0 8
v 8 3 8
v 0 3 8
f -1 -2 -3 -4

g left-wall
f -12 -4 -1 -9

g right-wall
f -11 -3 -2 -10

g ceiling
f -10 -9 -1 -2

We can render this model with the following simple code:

from picraft import Model, World, X, Y, Z

with World() as w:
 p = w.player.tile_pos - 3*X + 5*Z
 with w.connection.batch_start():
 for v, b in Model('house.obj').render().items():
 w.blocks[v + p] = b

[image: _images/house.png]
By default, the picraft renderer assumes that the material names are Minecraft
block types (see Block.NAMES). However, this is frequently not the
case, requiring you to “map” the material names to block types yourself. A
materials map can be as simple as a dict [https://docs.python.org/3.4/library/stdtypes.html#dict] mapping material names to
Block instances. For example:

from picraft import World, Model, Block

print('Loading model airboat.obj')
m = Model('airboat.obj')
print('Model has the following materials:')
print('\n'.join(s or '<None>' for s in m.materials))

materials_map = {
 None: Block('stone'),
 'bluteal': Block('diamond_block'),
 'bronze': Block('gold_block'),
 'dkdkgrey': Block('#404040'),
 'dkteal': Block('#000080'),
 'red': Block('#ff0000'),
 'silver': Block('#ffffff'),
 'black': Block('#000000'),
 }

with World() as w:
 with w.connection.batch_start():
 for v, b in m.render(materials=materials_map).items():
 w.blocks[v] = b

[image: _images/airboat.png]
To find out what materials are defined on a model, you can query the
materials attribute. Note that some faces may
have no material associated with them, in which case their material is listed
as None (not the blank string).

A materials map may also be a function. This will be called with the face being
rendered and must return a Block instance or None
(if you don’t want that particular face to be rendered). This is useful for
quickly previewing a shape without performing any material mapping; simply
provide a function which always returns the same block type:

from picraft import World, Model, Block

m = Model('shuttle.obj').render(materials=lambda face: Block('stone'))

with World() as w:
 with w.connection.batch_start():
 for v, b in m.items():
 w.blocks[v + 20*Y] = b

3.7. Animation

This recipe demonstrates, in a series of steps, the construction of a
simplistic animation system in Minecraft. Our aim is to create a simple stone
cube which rotates about the X axis somewhere in the air. Our first script uses
vector_range() to obtain the coordinates of all blocks
within the cube, then uses the rotate() method to
rotate them about the X axis:

from __future__ import division

from time import sleep
from picraft import World, Vector, X, Y, Z, vector_range, Block

world = World()
world.checkpoint.save()
try:
 cube_range = vector_range(Vector() - 2, Vector() + 2 + 1)
 # Draw frame 1
 state = {}
 for v in cube_range:
 state[v + (5 * Y)] = Block('stone')
 with world.connection.batch_start():
 for v, b in state.items():
 world.blocks[v] = b
 sleep(0.2)
 # Wipe frame 1
 with world.connection.batch_start():
 for v in state:
 world.blocks[v] = Block('air')
 # Draw frame 2
 state = {}
 for v in cube_range:
 state[v.rotate(15, about=X).round() + (5 * Y)] = Block('stone')
 with world.connection.batch_start():
 for v, b in state.items():
 world.blocks[v] = b
 sleep(0.2)
 # and so on...
finally:
 world.checkpoint.restore()

As you can see in the script above we draw the first frame, wait for a bit,
then wipe the frame by setting all coordinates in that frame’s state back to
“air”. Then we draw the second frame and wait for a bit.

Although this approach works, it’s obviously very long winded for lots of
frames. What we want to do is calculate the state of each frame in a function.
This next version demonstrates this approach; we use a generator function to
yield the state of each frame in turn so we can iterate over the frames with
a simple for [https://docs.python.org/3.4/reference/compound_stmts.html#for] loop.

We represent the state of a frame of our animation as a dict which maps
coordinates (in the form of Vector instances) to
Block instances:

from __future__ import division

from time import sleep
from picraft import World, Vector, X, Y, Z, vector_range, Block

def animation_frames(count):
 cube_range = vector_range(Vector() - 2, Vector() + 2 + 1)
 for frame in range(count):
 state = {}
 for v in cube_range:
 state[v.rotate(15 * frame, about=X).round() + (5 * Y)] = Block('stone')
 yield state

world = World()
world.checkpoint.save()
try:
 for frame in animation_frames(10):
 # Draw frame
 with world.connection.batch_start():
 for v, b in frame.items():
 world.blocks[v] = b
 sleep(0.2)
 # Wipe frame
 with world.connection.batch_start():
 for v, b in frame.items():
 world.blocks[v] = Block('air')
finally:
 world.checkpoint.restore()

That’s more like it, but the updates aren’t terribly fast despite using the
batch functionality. In order to improve this we should only update those
blocks which have actually changed between each frame. Thankfully, because
we’re storing the state of each as a dict, this is quite easy:

from __future__ import division

from time import sleep
from picraft import World, Vector, X, Y, Z, vector_range, Block

def animation_frames(count):
 cube_range = vector_range(Vector() - 2, Vector() + 2 + 1)
 for frame in range(count):
 yield {
 v.rotate(15 * frame, about=X).round() + (5 * Y): Block('stone')
 for v in cube_range}

def track_changes(states, default=Block('air')):
 old_state = None
 for state in states:
 # Assume the initial state of the blocks is the default ('air')
 if old_state is None:
 old_state = {v: default for v in state}
 # Build a dict of those blocks which changed from old_state to state
 changes = {v: b for v, b in state.items() if old_state.get(v) != b}
 # Blank out blocks which were in old_state but aren't in state
 changes.update({v: default for v in old_state if v not in state})
 yield changes
 old_state = state

world = World()
world.checkpoint.save()
try:
 for state in track_changes(animation_frames(20)):
 with world.connection.batch_start():
 for v, b in state.items():
 world.blocks[v] = b
 sleep(0.2)
finally:
 world.checkpoint.restore()

Note: this still isn’t perfect. Ideally, we would identify contiguous blocks of
coordinates to be updated which have the same block and set them all at the
same time (which will utilize the world.setBlocks call for efficiency).
However, this is relatively complex to do well so I shall leave it as an
exercise for you, dear reader!

3.8. Minecraft TV

If you’ve got a Raspberry Pi camera module, you can build a TV to view a live
feed from the camera in the Minecraft world. Firstly we need to construct a
class which will accept JPEGs from the camera’s MJPEG stream, and render them
as blocks in the Minecraft world. Then we need a class to construct the TV
model itself and enable interaction with it:

from __future__ import division

import io
import time
import picamera
from picraft import World, V, X, Y, Z, Block
from PIL import Image

def track_changes(old_state, new_state, default=Block('#000000')):
 changes = {v: b for v, b in new_state.items() if old_state.get(v) != b}
 changes.update({v: default for v in old_state if not v in new_state})
 return changes

class MinecraftTVScreen(object):
 def __init__(self, world, origin, size):
 self.world = world
 self.origin = origin
 self.size = size
 self.jpeg = None
 self.state = {}
 # Construct a palette for PIL
 self.palette = list(Block.COLORS)
 self.palette_img = Image.new('P', (1, 1))
 self.palette_img.putpalette(
 [c for rgb in self.palette for c in rgb] +
 list(self.palette[0]) * (256 - len(self.palette))
)

 def write(self, buf):
 if buf.startswith(b'\xff\xd8'):
 if self.jpeg:
 self.jpeg.seek(0)
 self.render(self.jpeg)
 self.jpeg = io.BytesIO()
 self.jpeg.write(buf)

 def close(self):
 self.jpeg = None

 def render(self, jpeg):
 o = self.origin
 img = Image.open(jpeg)
 img = img.resize(self.size, Image.BILINEAR)
 img = img.quantize(len(self.palette), palette=self.palette_img)
 new_state = {
 o + V(0, y, x): Block.from_color(self.palette[img.getpixel((x, y))], exact=True)
 for x in range(img.size[0])
 for y in range(img.size[1])
 }
 with self.world.connection.batch_start():
 for v, b in track_changes(self.state, new_state).items():
 self.world.blocks[v] = b
 self.state = new_state

class MinecraftTV(object):
 def __init__(self, world, origin=V(), size=(12, 8)):
 self.world = world
 self.camera = picamera.PiCamera()
 self.camera.resolution = (64, int(64 / size[0] * size[1]))
 self.camera.framerate = 5
 self.origin = origin
 self.size = V(0, size[1], size[0])
 self.button_pos = None
 self.quit_pos = None
 self.screen = MinecraftTVScreen(
 self.world, origin + V(0, 1, 1), (size[0] - 2, size[1] - 2))

 def main_loop(self):
 try:
 self.create_tv()
 running = True
 while running:
 for event in self.world.events.poll():
 if event.pos == self.button_pos:
 if self.camera.recording:
 self.switch_off()
 else:
 self.switch_on()
 elif event.pos == self.quit_pos:
 running = False
 time.sleep(0.1)
 finally:
 if self.camera.recording:
 self.switch_off()
 self.destroy_tv()

 def create_tv(self):
 o = self.origin
 self.world.blocks[o:o + self.size + 1] = Block('#ffffff')
 self.world.blocks[
 o + V(0, 1, 1):o + self.size - V(0, 2, 2) + 1] = Block('#000000')
 self.button_pos = o + V(z=3)
 self.quit_pos = o + V(z=1)
 self.world.blocks[self.button_pos] = Block('#0080ff')
 self.world.blocks[self.quit_pos] = Block('#800000')
 self.world.say('Behold the Minecraft TV!')

 def destroy_tv(self):
 o = self.origin
 self.world.blocks[o:o + self.size + 1] = Block('air')

 def switch_on(self):
 self.world.say('Switching TV on')
 self.camera.start_recording(self.screen, format='mjpeg')

 def switch_off(self):
 self.world.say('Switching TV off')
 self.camera.stop_recording()
 o = self.origin
 self.world.blocks[
 o + V(0, 1, 1):o + self.size - V(0, 2, 2) + 1] = Block('#000000')

with World() as world:
 p = world.player.tile_pos
 tv = MinecraftTV(world, origin=p + 8*X + 2*Y, size=(20, 14))
 tv.main_loop()

Don’t expect to be able to recognize much in the Minecraft TV; the resolution
is extremely low and the color matching is far from perfect. Still, if you
point the camera at obvious blocks of primary colors and move it around slowly
you should see a similar result on the in-game display.

The script includes the ability to position and size the TV as you like, and
you may like to experiment with adding new controls to it!

[image: _images/tv.png]

4. Turtle Graphics

Turtle graphics is a popular way for introducing programming to kids. It was
part of the original Logo programming language developed by Wally Feurzig and
Seymour Papert in 1966.

The turtle [https://docs.python.org/3.4/library/turtle.html#module-turtle] module in Python’s standard library provides a classic
implementation which moves a triangular turtle around a graphical window
drawing geometric shapes.

The picraft turtle module is similar, but instead of a two-dimensional
graphical window, its canvas is the Minecraft world. The module provides an
object-oriented interface for advanced users that want to control multiple
turtles and a simpler procedural interface for newer programmers.

When the turtle is initially created or shown, its default position is beneath
the player’s feet:

>>> from picraft.turtle import *
>>> showturtle()

[image: _images/turtle1.png]
The turtle’s shape indicates its “forward” direction. Various simple commands
can be used to control its orientation and motion:

>>> right(180)
>>> forward(5)

[image: _images/turtle2.png]
Every operation can be undone, and commands can be built up to construct
whole shapes:

>>> undo()
>>> penup()
>>> forward(5)
>>> left(90)
>>> pendown()
>>> fillblock('diamond_block')
>>> fill(True)
>>> forward(3)
>>> left(90)
>>> forward(4)
>>> left(135)
>>> forward(4)
>>> fill(False)

[image: _images/turtle3.png]

4.1. Overview of available Turtle and TurtleScreen methods

4.1.1. Turtle methods

	Turtle motion

	
	Move and draw

	
forward() | fd()

backward() | bk() | back()

left() | lt()

right() | rt()

up()

down() | dn()

goto() | setpos() | setposition()

setx()

sety()

setz()

setheading() | seth()

setelevation() | sete()

home()

	Tell Turtle’s state

	
position() | pos()

towards()

heading()

elevation()

xcor()

ycor()

zcor()

distance()

	Pen control

	
	Drawing state

	
pendown() | pd()

penup() | pu()

isdown()

	Block control

	
penblock()

fillblock()

	Filling

	
fill()

begin_fill()

end_fill()

	More drawing control

	
reset()

clear()

	Turtle state

	
	Visibility

	
showturtle() | st()

hideturtle() | ht()

isvisible()

	Special Turtle methods

	
undobufferentries()

getturtle() | getpen()

getscreen()

4.2. Methods of Turtle and corresponding functions

4.2.1. Turtle motion

	
picraft.turtle.fd(distance)

	

	
picraft.turtle.forward(distance)

	
	Parameters

	distance (float [https://docs.python.org/3.4/library/functions.html#float]) – the number of blocks to move forward.

Move the turtle forward by the specified distance, in the direction
the turtle is headed:

>>> position()
Vector(x=2, y=-1, z=13)
>>> forward(5)
>>> position()
Vector(x=2, y=-1, z=18)
>>> forward(-2)
>>> position()
Vector(x=2, y=-1, z=16)

	
picraft.turtle.back(distance)

	

	
picraft.turtle.bk(distance)

	

	
picraft.turtle.backward(distance)

	
	Parameters

	distance (float [https://docs.python.org/3.4/library/functions.html#float]) – the number of blocks to move back.

Move the turtle backward by the specified distance, opposite to the
direction the turtle is headed. Does not change the turtle’s heading:

>>> heading()
0.0
>>> position()
Vector(x=2, y=-1, z=18)
>>> backward(2)
>>> position()
Vector(x=2, y=-1, z=16)
>>> heading()
0.0

	
picraft.turtle.lt(angle)

	

	
picraft.turtle.left(angle)

	
	Parameters

	angle (float [https://docs.python.org/3.4/library/functions.html#float]) – the number of degrees to turn counter clockwise.

Turns the turtle left (counter-clockwise) by angle degrees:

>>> heading()
90.0
>>> left(90)
>>> heading()
0.0

	
picraft.turtle.rt(angle)

	

	
picraft.turtle.right(angle)

	
	Parameters

	angle (float [https://docs.python.org/3.4/library/functions.html#float]) – the number of degrees to turn clockwise.

Turns the turtle right (clockwise) by angle degrees:

>>> heading()
0.0
>>> right(90)
>>> heading()
90.0

	
picraft.turtle.up(angle)

	
	Parameters

	angle (float [https://docs.python.org/3.4/library/functions.html#float]) – the number of degrees to increase elevation by.

Turns the turtle’s nose (its elevation) up by angle degrees:

>>> elevation()
-45.0
>>> up(45)
>>> elevation()
0.0

	
picraft.turtle.dn(angle)

	

	
picraft.turtle.down(angle)

	
	Parameters

	angle (float [https://docs.python.org/3.4/library/functions.html#float]) – the number of degrees to reduce elevation by.

Turns the turtle’s nose (its elevation) down by angle degrees:

>>> elevation()
0.0
>>> down(45)
>>> elevation()
-45.0

	
picraft.turtle.setpos(x, y=None, z=None)

	

	
picraft.turtle.setposition(x, y=None, z=None)

	

	
picraft.turtle.goto(x, y=None, z=None)

	
	Parameters

	
	x (float [https://docs.python.org/3.4/library/functions.html#float]) – the new x coordinate or a turtle / triple /
Vector of numbers

	y (float [https://docs.python.org/3.4/library/functions.html#float]) – the new y coordinate or None

	z (float [https://docs.python.org/3.4/library/functions.html#float]) – the new z coordinate or None

Moves the turtle to an absolute position. If the pen is down, draws
a line between the current position and the newly specified position.
Does not change the turtle’s orientation:

>>> tp = pos()
>>> tp
Vector(x=2, y=-1, z=16)
>>> setpos(4, -1, 16)
>>> pos()
Vector(x=4, y=-1, z=16)
>>> setpos((0, -1, 16))
>>> pos()
Vector(x=0, y=-1, z=16)
>>> setpos(tp)
>>> pos()
Vector(x=2, y=-1, z=16)

If y and z are None, x must be a triple of coordinates, a
Vector, or another Turtle.

	
picraft.turtle.setx(x)

	
	Parameters

	x (float [https://docs.python.org/3.4/library/functions.html#float]) – the new x coordinate

Set the turtle’s first coordinate to x; leave the second and third
coordinates unchanged:

>>> position()
Vector(x=2, y=-1, z=16)
>>> setx(5)
>>> position()
Vector(x=5, y=-1, z=16)

	
picraft.turtle.sety(y)

	
	Parameters

	y (float [https://docs.python.org/3.4/library/functions.html#float]) – the new y coordinate

Set the turtle’s second coordinate to y; leave the first and third
coordinates unchanged:

>>> position()
Vector(x=2, y=-1, z=16)
>>> sety(5)
>>> position()
Vector(x=2, y=5, z=16)

	
picraft.turtle.setz(z)

	
	Parameters

	z (float [https://docs.python.org/3.4/library/functions.html#float]) – the new z coordinate

Set the turtle’s third coordinate to z; leave the first and second
coordinates unchanged:

>>> position()
Vector(x=2, y=-1, z=16)
>>> setz(5)
>>> position()
Vector(x=2, y=-1, z=5)

	
picraft.turtle.seth(to_angle)

	

	
picraft.turtle.setheading(to_angle)

	
	Parameters

	to_angle (float [https://docs.python.org/3.4/library/functions.html#float]) – the new heading

Set the orientation of the turtle on the ground plane (X-Z) to
to_angle. The common directions in degrees correspond to the
following axis directions:

	heading

	axis

	0

	+Z

	90

	+X

	180

	-Z

	270

	-X

>>> setheading(90)
>>> heading()
90.0

	
picraft.turtle.sete(to_angle)

	

	
picraft.turtle.setelevation(to_angle)

	
	Parameters

	to_angle (float [https://docs.python.org/3.4/library/functions.html#float]) – the new elevation

Set the elevation of the turtle away from the ground plane (X-Z) to
to_angle. At 0 degrees elevation, the turtle moves along the ground
plane (X-Z). At 90 degrees elevation, the turtle moves vertically
upward, and at -90 degrees, the turtle moves vertically downward:

>>> setelevation(90)
>>> elevation()
90.0

	
picraft.turtle.home()

	Move the turtle to its starting position (this is usually beneath where
the player was standing when the turtle was spawned), and set its
heading to its start orientation (0 degrees heading, 0 degrees
elevation):

>>> heading()
90.0
>>> elevation
45.0
>>> position()
Vector(x=2, y=-1, z=16)
>>> home()
>>> position()
Vector(x=0, y=-1, z=0)
>>> heading()
0.0
>>> elevation()
0.0

	
picraft.turtle.undo()

	Undo (repeatedly) the last turtle action(s):

>>> for i in range(4):
... fd(5)
... lt(90)
...
>>> for i in range(8):
... undo()

4.2.2. Tell Turtle’s state

	
picraft.turtle.position()

	

	
picraft.turtle.pos()

	Return the turtle’s current location (x, y, z) as a
Vector:

>>> pos()
Vector(x=2, y=-1, z=18)

	
picraft.turtle.towards(x, y=None, z=None)

	
	Parameters

	
	x (float [https://docs.python.org/3.4/library/functions.html#float]) – the target x coordinate or a turtle / triple /
Vector of numbers

	y (float [https://docs.python.org/3.4/library/functions.html#float]) – the target y coordinate or None

	z (float [https://docs.python.org/3.4/library/functions.html#float]) – the target z coordinate or None

Return the angle between the line from the turtle’s position to the
position specified within the ground plane (X-Z):

>>> home()
>>> forward(5)
>>> towards(0, 0, 0)
-180.0
>>> left(90)
>>> forward(5)
>>> towards(0, 0, 0)
135.0

If y and z are None, x must be a triple of coordinates, a
Vector, or another Turtle.

	
picraft.turtle.heading()

	Return the turtle’s current heading (its orientation along the ground
plane, X-Z):

>>> home()
>>> right(90)
>>> heading()
90.0

	
picraft.turtle.elevation()

	Return the turtle’s current elevation (its orientation away from the
ground plane, X-Z):

>>> home()
>>> up(90)
>>> elevation()
90.0

	
picraft.turtle.xcor()

	Return the turtle’s x coordinate:

>>> home()
>>> xcor()
0
>>> left(90)
>>> forward(2)
>>> xcor()
2

	
picraft.turtle.ycor()

	Return the turtle’s y coordinate:

>>> home()
>>> ycor()
-1
>>> up(90)
>>> forward(2)
>>> ycor()
1

	
picraft.turtle.zcor()

	Return the turtle’s z coordinate:

>>> home()
>>> zcor()
0
>>> forward(2)
>>> zcor()
2

	
picraft.turtle.distance(x, y=None, z=None)

	
	Parameters

	
	x (float [https://docs.python.org/3.4/library/functions.html#float]) – the target x coordinate or a turtle / triple /
Vector of numbers

	y (float [https://docs.python.org/3.4/library/functions.html#float]) – the target y coordinate or None

	z (float [https://docs.python.org/3.4/library/functions.html#float]) – the target z coordinate or None

Return the distance from the turtle to (x, y, z), the given vector, or
the given other turtle, in blocks:

>>> home()
>>> distance((0, -1, 5))
5.0
>>> forward(2)
>>> distance(0, -1, 5)
3.0

4.3. Pen control

4.3.1. Drawing state

	
picraft.turtle.pd()

	

	
picraft.turtle.pendown()

	Put the “pen” down; the turtle draws new blocks when it moves.

	
picraft.turtle.pu()

	

	
picraft.turtle.penup()

	Put the “pen” up; movement doesn’t draw new blocks.

	
picraft.turtle.isdown()

	Returns True if the pen is down, False if it’s up.

4.3.2. Block control

	
picraft.turtle.penblock(*args)

	Return or set the block that the turtle draws when it moves. Several
input formats are allowed:

	penblock()

	Return the current pen block. May be used as input to another
penblock or fillblock call.

	penblock(Block('grass'))

	Set the pen block to the specified Block
instance.

	penblock('grass')

	Implicitly make a Block from the given
arguments and set that as the pen block.

>>> penblock()
<Block "stone" id=1 data=0>
>>> penblock('diamond_block')
>>> penblock()
<Block "diamond_block" id=57 data=0>
>>> penblock(1, 0)
>>> penblock()
<Block "stone" id=1 data=0>

	
picraft.turtle.fillblock(*args)

	Return or set the block that the turtle fills shapes with. Several
input formats are allowed:

	fillblock()

	Return the current fill block. May be used as input to another
penblock or fillblock call.

	fillblock(Block('grass'))

	Set the fill block to the specified Block
instance.

	fillblock('grass')

	Implicitly make a Block from the given
arguments and set that as the fill block.

>>> fillblock()
<Block "stone" id=1 data=0>
>>> fillblock('diamond_block')
>>> fillblock()
<Block "diamond_block" id=57 data=0>
>>> fillblock(1, 0)
>>> fillblock()
<Block "stone" id=1 data=0>

4.3.3. Filling

	
picraft.turtle.fill(flag=None)

	
	Parameters

	flag (bool [https://docs.python.org/3.4/library/functions.html#bool]) – True if beginning a fill, False if ending a fill.

Call fill(True) before drawing the shape you want to fill, and
fill(False) when done. When used without argument: return the
fill state (True if filling, False otherwise).

	
picraft.turtle.begin_fill()

	Call just before drawing a shape to be filled. Equivalent to
fill(True).

	
picraft.turtle.end_fill()

	Fill the shape drawn after the last call to begin_fill().
Equivalent to fill(False).

4.3.4. More drawing control

	
picraft.turtle.reset()

	

	
picraft.turtle.clear()

	

4.4. Turtle state

4.4.1. Visibility

	
picraft.turtle.st()

	

	
picraft.turtle.showturtle()

	Make the turtle visible:

>>> showturtle()

	
picraft.turtle.ht()

	

	
picraft.turtle.hideturtle()

	Make the turtle invisible:

>>> hideturtle()

	
picraft.turtle.isvisible()

	Return True if the turtle is shown, False if it’s hidden:

>>> hideturtle()
>>> isvisible()
False
>>> showturtle()
>>> isvisible()
True

4.5. Special Turtle methods

	
picraft.turtle.undobufferentries()

	Return number of entries in the undobuffer:

>>> while undobufferentries():
... undo()

	
picraft.turtle.getpen()

	

	
picraft.turtle.getturtle()

	Return the Turtle object itself. Only reasonable use: as a function to
return the “anonymous” turtle:

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<picraft.turtle.Turtle object at 0x...>

	
picraft.turtle.getscreen()

	Return the TurtleScreen object the turtle is drawing on:

>>> ts = getscreen()
>>> ts
<picraft.turtle.TurtleScreen object at 0x...>
>>> ts.world.say("Hello world!")

5. Vectors

Vectors are a crucial part of working with picraft; sufficiently important to
demand their own section. This chapter introduces all the major vector
operations with simple examples and diagrams illustrating the results.

5.1. Orientation

Vectors represent a position or direction within the Minecraft world. The
Minecraft world uses a right-hand coordinate system [https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Orientation_and_handedness] where the Y axis is
vertical, and Z represents depth. You can think of positive Z values as
pointing “out of” the screen, while negative Z values point “into” the screen.

If you ever have trouble remembering the orientation label the thumb, index
finger, and middle finger of your right hand as X, Y, Z respectively. Raise
your hand so that Y (the index finger) is pointing up. Now spread your thumb
and middle finger so they’re at right angles to each other and your index
finger, and you’ll have the correct orientation of Minecraft’s coordinate
system.

The following illustration shows the directions of each of the axes:

[image: _images/block_faces.svg]

Positive rotation in Minecraft also follows the right-hand rule [https://en.wikipedia.org/wiki/Right-hand_rule]. For
example, positive rotation about the Y axis proceeds anti-clockwise along the
X-Z plane. Again, this is easy to see by applying the rule: make a fist with
your right hand, then point the thumb vertically (positive direction along the
Y axis). Your other fingers now indicate the positive direction of rotation
around that axis.

5.2. Vector-vector operations

The picraft Vector class is extremely flexible and
supports a wide variety of operations. All Python’s built-in operations
(addition, subtraction, division, multiplication, modulus, absolute, bitwise
operations, etc.) are supported between two vectors, in which case the
operation is performed element-wise. In other words, adding two vectors A
and B produces a new vector with its x attribute set to A.x + B.x,
its y attribute set to A.y + B.y and so on:

>>> from picraft import *
>>> Vector(1, 1, 0) + Vector(1, 0, 1)
Vector(x=2, y=1, z=1)

[image: _images/vector1.png]
Likewise for subtraction, multiplication, etc.:

>>> p = Vector(1, 2, 3)
>>> q = Vector(3, 2, 1)
>>> p - q
Vector(x=-2, y=0, z=2)
>>> p * q
Vector(x=3, y=4, z=3)
>>> p % q
Vector(x=1, y=0, z=0)

[image: _images/vector2.png]

5.3. Vector-scalar operations

Vectors also support several operations between themselves and a scalar value.
In this case the operation with the scalar is applied to each element of the
vector. For example, multiplying a vector by the number 2 will return a new
vector with every element of the original multiplied by 2:

>>> p * 2
Vector(x=2, y=4, z=6)
>>> p + 2
Vector(x=3, y=4, z=5)
>>> p // 2
Vector(x=0, y=1, z=1)

[image: _images/vector3.png]

5.4. Miscellaneous function support

Vectors also support several of Python’s built-in functions:

>>> abs(Vector(-1, 0, 1))
Vector(x=1, y=0, z=1)
>>> pow(Vector(1, 2, 3), 2)
Vector(x=1, y=4, z=9)
>>> import math
>>> math.trunc(Vector(1.5, 2.3, 3.7))
Vector(x=1, y=2, z=3)

5.5. Vector rounding

Some built-in functions can’t be directly supported, in which case equivalently
named methods are provided:

>>> p = Vector(1.5, 2.3, 3.7)
>>> p.round()
Vector(x=2, y=2, z=4)
>>> p.ceil()
Vector(x=2, y=3, z=4)
>>> p.floor()
Vector(x=1, y=2, z=3)

[image: _images/vector4.png]

Hint

Floor rounding is the method Minecraft uses to convert from a player
position to a tile position. Floor rounding may look like truncation, aka
“round toward zero”, but becomes different when negative numbers are
involved.

5.6. Short-cuts

Several vector short-hands are also provided. One for the unit vector along
each of the three axes (X, Y, and Z), one for the origin (O), and finally V
which is simply a short-hand for Vector itself. Obviously, these can be used
to simplify many vector-related operations:

>>> X
Vector(x=1, y=0, z=0)
>>> X + Y
Vector(x=1, y=1, z=0)
>>> p = V(1, 2, 3)
>>> p + X
Vector(x=2, y=2, z=3)
>>> p + 2 * Y
Vector(x=1, y=6, z=3)

[image: _images/vector5.png]

5.7. Rotation

From the paragraphs above it should be relatively easy to see how one can
implement vector translation and vector scaling using everyday operations like
addition, subtraction, multiplication and divsion. The third major
transformation usually required of vectors, rotation [http://en.wikipedia.org/wiki/Rotation_group_SO%283%29], is a little harder.
For this, the rotate() method is provided. This
takes two mandatory arguments: the number of degrees to rotate, and a vector
specifying the axis about which to rotate (it is recommended that this is
specified as a keyword argument for code clarity). For example:

>>> p = V(1, 2, 3)
>>> p.rotate(90, about=X)
Vector(x=1.0, y=-3.0, z=2.0)
>>> p.rotate(180, about=Y)
Vector(x=-0.9999999999999997, y=2, z=-3.0)
>>> p.rotate(180, about=Y).round()
Vector(x=-1.0, y=2.0, z=-3.0)

[image: _images/vector6.png]
>>> X.rotate(180, about=X + Y).round()
Vector(x=-0.0, y=1.0, z=-0.0)

[image: _images/vector7.png]
A third optional argument to rotate, origin, permits rotation about an
arbitrary line. When specified, the axis of rotation passes through the point
specified by origin and runs in the direction of the axis specified by
about. Naturally, origin defaults to the origin (0, 0, 0):

>>> (2 * Y).rotate(180, about=Y, origin=2 * X).round()
Vector(x=4.0, y=2.0, z=0.0)
>>> O.rotate(90, about=Y, origin=X).round()
Vector(x=1.0, y=0.0, z=1.0)

[image: _images/vector8.png]
To aid in certain kinds of rotation, the
angle_between() method can be used to determine
the angle between two vectors (in the plane common to both):

>>> X.angle_between(Y)
90.0
>>> p = V(1, 2, 3)
>>> X.angle_between(p)
74.498640433063

[image: _images/vector9.png]

5.8. Magnitudes

The magnitude attribute can be used to determine
the length of a vector (via Pythagoras’ theorem [http://en.wikipedia.org/wiki/Pythagorean_theorem]), while the
unit attribute can be used to obtain a vector in
the same direction with a magnitude (length) of 1.0. The
distance_to() method can also be used to calculate
the distance between two vectors (this is simply equivalent to the magnitude of
the vector obtained by subtracting one vector from the other):

>>> p = V(1, 2, 3)
>>> p.magnitude
3.7416573867739413
>>> p.unit
Vector(x=0.2672612419124244, y=0.5345224838248488, z=0.8017837257372732)
>>> p.unit.magnitude
1.0
>>> q = V(2, 0, 1)
>>> p.distance_to(q)
3.0

[image: _images/vector10.png]

5.9. Dot and cross products

The dot [http://en.wikipedia.org/wiki/Dot_product] and cross [http://en.wikipedia.org/wiki/Cross_product] products of a vector with another can be calculated
using the dot() and
cross() methods respectively. These are useful for
determining whether vectors are orthogonal [http://en.wikipedia.org/wiki/Orthogonality] (the dot product of orthogonal
vectors is always 0), for finding a vector perpendicular to the plane of two
vectors (via the cross product), or for finding the volume of a parallelepiped
defined by three vectors, via the triple product [http://en.wikipedia.org/wiki/Triple_product]:

>>> p = V(x=2)
>>> q = V(z=-1)
>>> p.dot(q)
0
>>> r = p.cross(q)
>>> r
Vector(x=0, y=2, z=0)
>>> area_of_pqr = p.cross(q).dot(r)
>>> area_of_pqr
4

[image: _images/vector11.png]

5.10. Projection

The final method provided by the Vector class is
project() which implements scalar projection [https://en.wikipedia.org/wiki/Scalar_projection].
You might think of this as calculating the length of the shadow one vector
casts upon another. Or, put another way, this is the length of one vector
in the direction of another (unit) vector:

>>> p = V(1, 2, 3)
>>> p.project(X)
1.0
>>> q = X + Z
>>> p.project(q)
2.82842712474619
>>> r = q.unit * p.project(q)
>>> r.round(4)
Vector(x=2.0, y=0.0, z=2.0)

[image: _images/vector12.png]

5.11. Immutability

Vectors in picraft (in contrast to the Vec3 class in mcpi) are immutable. This
simply means that you cannot change the X, Y, or Z coordinate of an existing
vector:

>>> v = Vector(1, 2, 3)
>>> v.x += 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>> v.x = 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

Given that nearly every standard operation can be applied to the vector itself,
this isn’t a huge imposition:

>>> v + X
Vector(x=2, y=2, z=3)
>>> v += X
>>> v
Vector(x=2, y=2, z=3)

Nevertheless, it may seem like an arbitrary restriction. However, it conveys an
extremely important capability in Python: only immutable objects may be keys of
a dict [https://docs.python.org/3.4/library/stdtypes.html#dict] or members of a set [https://docs.python.org/3.4/library/stdtypes.html#set]. Hence, in picraft, a dict can be
used to represent the state of a portion of the world by mapping vectors to
block types, and set operators can be used to trivially determine regions.

For example, consider two vector ranges. We can convert them to sets and use
the standard set operators to determine all vectors that occur in both ranges,
and in one but not the other:

>>> vr1 = vector_range(O, V(5, 0, 5) + 1)
>>> vr1 = vector_range(O, V(2, 0, 5) + 1)
>>> vr2 = vector_range(O, V(5, 0, 2) + 1)
>>> set(vr1) & set(vr2)
set([Vector(x=0, y=0, z=2), Vector(x=1, y=0, z=0), Vector(x=2, y=0, z=2),
Vector(x=0, y=0, z=1), Vector(x=1, y=0, z=1), Vector(x=0, y=0, z=0),
Vector(x=2, y=0, z=1), Vector(x=1, y=0, z=2), Vector(x=2, y=0, z=0)])
>>> set(vr1) - set(vr2)
set([Vector(x=1, y=0, z=3), Vector(x=1, y=0, z=4), Vector(x=2, y=0, z=4),
Vector(x=1, y=0, z=5), Vector(x=0, y=0, z=5), Vector(x=0, y=0, z=4),
Vector(x=2, y=0, z=3), Vector(x=2, y=0, z=5), Vector(x=0, y=0, z=3)])

[image: _images/regions1.png]
We could use a dict to store the state of the world for one of the ranges:

>>> d = {v: b for (v, b) in zip(vr1, world.blocks[vr1])}

We can then manipulate this using dict comprehensions. For example, to modify
the dict to shift all vectors right by two blocks:

>>> d = {v + 2*X: b for (v, b) in d.items()}

Or to rotate the vectors by 45 degrees about the Y axis:

>>> d = {v.rotate(45, about=Y).round(): b for (v, b) in d.items()}

It is also worth noting to that due to their nature, sets and dicts
automatically eliminate duplicated coordinates. This can be useful for
efficiency, but in some cases (such as the rotation above), can be something to
watch out for.

6. Conversion from mcpi

If you have existing scripts that use the mcpi implementation, and you wish to
convert them to using the picraft library, this section contains details and
examples covering equivalent functionality between the libraries.

6.1. Minecraft.create

Equivalent: World

To create a connection using default settings is similar in both libraries:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()

>>> from picraft import World
>>> w = World()

Creating a connection with an explicit hostname and port is also similar:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create('localhost', 4711)

>>> from picraft import World
>>> w = World('localhost', 4711)

6.2. Minecraft.getBlock

See Minecraft.getBlockWithData below.

6.3. Minecraft.getBlocks

Equivalent: blocks

This method only works with the Raspberry Juice [http://dev.bukkit.org/bukkit-plugins/raspberryjuice/] mod for the PC version of
Minecraft. In picraft simply query the blocks
attribute with a slice of vectors, just as with the equivalent to
Minecraft.setBlocks below:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlocks(0, -1, 0, 0, 5, 0)
[2, 2, 2, 2, 2, 2, 2]

>>> from picraft import World, Vector, Block
>>> w = World()
>>> v1 = Vector(0, -1, 0)
>>> v2 = Vector(0, 5, 0)
>>> w.blocks[v1:v2 + 1]
[<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>,
<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>,
<Block "grass" id=2 data=0>]

Note

In picraft, this method will work with both Raspberry Juice and Minecraft
Pi Edition, but the efficient getBlocks call will only be used when
picraft detects it is connected to a Raspberry Juice server.

Warning

There is currently no equivalent to getBlockWithData that operates over
multiple blocks, so blocks returned by querying in this manner only have a
valid id field; the
data attribute is always 0.

6.4. Minecraft.getBlockWithData

Equivalent: blocks

There is no direct equivalent to getBlock, just getBlockWithData (as
there’s no difference in operational cost so there’s little point in retrieving
a block id without the data). In mcpi this is done by executing a method; in
picraft this is done by querying an attribute with a
Vector:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlock(0, -1, 0)
2
>>> mc.getBlockWithData(0, -1, 0)
Block(2, 0)

>>> from picraft import World, Vector
>>> w = World()
>>> w.blocks[Vector(0, -1, 0)]
<Block "grass" id=2 data=0>

The id and data can be extracted from the Block tuple
that is returned:

>>> b = w.blocks[Vector(0, -1, 0)]
>>> b.id
2
>>> b.data
0

6.5. Minecraft.setBlock

Equivalent: blocks

In picraft the same attribute is used as for accessing block ids; just assign
a Block instance to the attribute, instead of querying
it:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlock(0, -1, 0)
2
>>> mc.setBlock(0, -1, 0, 1, 0)

>>> from picraft import World, Vector, Block
>>> w = World()
>>> w.blocks[Vector(0, -1, 0)]
<Block "grass" id=2 data=0>
>>> w.blocks[Vector(0, -1, 0)] = Block(1, 0)

6.6. Minecraft.setBlocks

Equivalent: blocks

The same attribute as for setBlock is used for setBlocks; just pass a
slice of vectors instead of a single vector
(the example below shows an easy method of generating such a slice by adding 1
to a vector for the upper end of the slice):

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlock(0, -1, 0)
2
>>> mc.setBlocks(0, -1, 0, 0, 5, 0, 1, 0)

>>> from picraft import World, Vector, Block
>>> w = World()
>>> v1 = Vector(0, -1, 0)
>>> v2 = Vector(0, 5, 0)
>>> w.blocks[v]
<Block "grass" id=2 data=0>
>>> w.blocks[v1:v2 + 1] = Block(1, 0)

6.7. Minecraft.getHeight

Equivalent: height

Retrieving the height of the world in a specific location is done with an
attribute (like retrieving the id and type of blocks). Unlike mcpi, you
pass a full vector (of which the Y-coordinate is ignored), and the property
returns a full vector with the same X- and Z-coordinates, but the Y-coordinate
of the first non-air block from the top of the world:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getHeight(0, 0)
0

>>> from picraft import World, Vector
>>> w = World()
>>> w.height[Vector(0, -10, 0)]
Vector(x=0, y=0, z=0)

6.8. Minecraft.getPlayerEntityIds

Equivalent: players

The connected player’s entity ids can be retrieved by iterating over the
players attribute which acts as a mapping from
player id to Player instances:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getPlayerEntityIds()
[1]

>>> from picraft import World
>>> w = World()
>>> list(w.players)
[1]

6.9. Minecraft.saveCheckpoint

Equivalent: save()

Checkpoints can be saved in a couple of ways with picraft. Either you can
explicitly call the save() method, or you
can use the checkpoint attribute as a context
manager:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.saveCheckpoint()

>>> from picraft import World
>>> w = World()
>>> w.checkpoint.save()

In the context manager case, the checkpoint will be saved upon entry to the
context and will only be restored if an exception occurs within the context:

>>> from picraft import World, Vector, Block
>>> w = World()
>>> with w.checkpoint:
... # Do something with blocks...
... w.blocks[Vector()] = Block.from_name('stone')

6.10. Minecraft.restoreCheckpoint

Equivalent: restore()

As with saving a checkpoint, either you can call
restore() directly:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.saveCheckpoint()
>>> mc.restoreCheckpoint()

>>> from picraft import World
>>> w = World()
>>> w.checkpoint.save()
>>> w.checkpoint.restore()

Or you can use the context manager to restore the checkpoint automatically in
the case of an exception:

>>> from picraft import World, Vector, Block
>>> w = World()
>>> with w.checkpoint:
... # Do something with blocks
... w.blocks[Vector()] = Block.from_name('stone')
... # Raising an exception within the block will implicitly
... # cause the checkpoint to restore
... raise Exception('roll back to the checkpoint')

6.11. Minecraft.postToChat

Equivalent: say()

The postToChat method is simply replaced with the
say() method with the one exception that the latter
correctly recognizes line breaks in the message:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.postToChat('Hello world!')

>>> from picraft import World
>>> w = World()
>>> w.say('Hello world!')

6.12. Minecraft.setting

Equivalent: immutable and
nametags_visible

The setting method is replaced with (write-only) properties with the
equivalent names to the settings that can be used:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.setting('world_immutable', True)
>>> mc.setting('nametags_visible', True)

>>> from picraft import World
>>> w = World()
>>> w.immutable = True
>>> w.nametags_visible = True

6.13. Minecraft.player.getPos

Equivalent: pos

The player.getPos and player.setPos methods are replaced with the
pos attribute which returns a
Vector of floats and accepts the same to move the host
player:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getPos()
Vec3(12.7743,12.0,-8.39158)
>>> mc.player.setPos(12,12,-8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.player.pos
Vector(x=12.7743, y=12.0, z=-8.39158)
>>> w.player.pos = Vector(12, 12, -8)

One advantage of this implementation is that adjusting the player’s position
relative to their current one becomes simple:

>>> w.player.pos += Vector(y=20)

6.14. Minecraft.player.setPos

See Minecraft.player.getPos above.

6.15. Minecraft.player.getTilePos

Equivalent: tile_pos

The player.getTilePos and player.setTilePos methods are replaced with
the tile_pos attribute which returns a
Vector of ints, and accepts the same to move the
host player:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getTilePos()
Vec3(12,12,-9)
>>> mc.player.setTilePos(12, 12, -8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.player.tile_pos
Vector(x=12, y=12, z=-9)
>>> w.player.tile_pos += Vector(y=20)

6.16. Minecraft.player.setTilePos

See Minecraft.player.getTilePos above.

6.17. Minecraft.player.setting

Equivalent: autojump

The player.setting method is replaced with the write-only
autojump attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.setting('autojump', False)

>>> from picraft import World
>>> w = World()
>>> w.player.autojump = False

6.18. Minecraft.player.getRotation

Equivalent: heading

The player.getRotation method is replaced with the read-only
heading attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getRotation()
49.048615

>>> from picraft import World
>>> w = World()
>>> w.player.heading
49.048615

6.19. Minecraft.player.getPitch

Equivalent: pitch

The player.getPitch method is replaced with the read-only
pitch attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getPitch()
4.3500223

>>> from picraft import World
>>> w = World()
>>> w.player.pitch
4.3500223

6.20. Minecraft.player.getDirection

Equivalent: direction

The player.getDirection method is replaced with the read-only
direction attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getDirection()
Vec3(0.1429840348766887,-0.3263934845430674,0.934356922711132)

>>> from picraft import World
>>> w = World()
>>> w.player.direction
Vector(x=0.1429840348766887, y=-0.3263934845430674, z=0.934356922711132)

6.21. Minecraft.entity.getPos

Equivalent: pos

The entity.getPos and entity.setPos methods are replaced with the
pos attribute. Access the relevant
Player instance by indexing the
players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getPos(1)
Vec3(12.7743,12.0,-8.39158)
>>> mc.entity.setPos(1, 12, 12, -8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.players[1].pos
Vector(x=12.7743, y=12.0, z=-8.39158)
>>> w.players[1].pos = Vector(12, 12, -8)

6.22. Minecraft.entity.setPos

See Minecraft.entity.getPos above.

6.23. Minecraft.entity.getTilePos

Equivalent: tile_pos

The entity.getTilePos and entity.setTilePos methods are replaced with
the tile_pos attribute. Access the relevant
Player instance by indexing the
players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getTilePos(1)
Vec3(12,12,-9)
>>> mc.entity.setTilePos(1, 12, 12, -8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.players[1].tile_pos
Vector(x=12, y=12, z=-9)
>>> w.players[1].tile_pos += Vector(y=20)

6.24. Minecraft.entity.setTilePos

See Minecraft.entity.getTilePos above.

6.25. Minecraft.entity.getRotation

Equivalent: heading

The entity.getRotation method is replaced with the read-only
heading attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getRotation(213)
49.048615

>>> from picraft import World
>>> w = World()
>>> w.players[213].heading
49.048615

6.26. Minecraft.entity.getPitch

Equivalent: pitch

The entity.getPitch method is replaced with the read-only
pitch attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getPitch(213)
4.3500223

>>> from picraft import World
>>> w = World()
>>> w.players[213].pitch
4.3500223

6.27. Minecraft.entity.getDirection

Equivalent: direction

The entity.getDirection method is replaced with the read-only
duration attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getDirection(213)
Vec3(0.1429840348766887,-0.3263934845430674,0.934356922711132)

>>> from picraft import World
>>> w = World()
>>> w.players[213].direction
Vector(x=0.1429840348766887, y=-0.3263934845430674, z=0.934356922711132)

6.28. Minecraft.camera.setNormal

Equivalent: first_person()

The camera attribute in picraft holds a
Camera instance which controls the camera in the
Minecraft world. The first_person() method can be
used to set the camera to view the world through the eyes of the specified
player. The player is specified as the world’s
player attribute, or as a player retrieved from
the players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.camera.setNormal()
>>> mc.camera.setNormal(2)

>>> from picraft import World
>>> w = World()
>>> w.camera.first_person(w.player)
>>> w.camera.first_person(w.players[2])

6.29. Minecraft.camera.setFollow

Equivalent: third_person()

The camera attribute in picraft holds a
Camera instance which controls the camera in the
Minecraft world. The third_person() method can be
used to set the camera to view the specified player from above. The player is
specified as the world’s player attribute, or as a
player retrieved from the players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.camera.setFollow()
>>> mc.camera.setNormal(1)

>>> from picraft import World
>>> w = World()
>>> w.camera.third_person(w.player)
>>> w.camera.third_person(w.players[1])

6.30. Minecraft.camera.setFixed

Equivalent: pos

The pos attribute can be passed a
Vector instance to specify the absolute position of
the camera. The camera will be pointing straight down (y=-1) from the given
position and will not move to follow any entity:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.camera.setFixed()
>>> mc.camera.setPos(0,20,0)

>>> from picraft import World, Vector
>>> w = World()
>>> w.camera.pos = Vector(0, 20, 0)

6.31. Minecraft.camera.setPos

See Minecraft.camera.setFixed above.

6.32. Minecraft.block.Block

Equivalent: Block

The Block class in picraft is similar to the Block
class in mcpi but with one major difference: in picraft a Block instance
is a tuple descendent and therefore immutable (you cannot change the id or
data attributes of a Block instance).

This may seem like an arbitrary barrier, but firstly its quite rare to
adjust the the id or data attribute (it’s rather more common to just overwrite
a block in the world with an entirely new type), and secondly this change
permits blocks to be used as keys in a Python dictionary, or to be stored
in a set.

The Block class also provides several means of
construction, and additional properties:

>>> from picraft import Block
>>> Block(1, 0)
<Block "stone" id=1 data=0>
>>> Block(35, 1)
<Block "wool" id=35 data=1>
>>> Block.from_name('wool', data=1).description
u'Orange Wool'
>>> Block.from_color('#ffffff').description
u'White Wool'

Compatibility constants are also provided:

>>> from picraft import block
>>> block.DIAMOND_BLOCK
<Block "diamond_block" id=57 data=0>
>>> block.STONE
<Block "stone" id=1 data=0>

7. Frequently Asked Questions

Feel free to ask the author, or add questions to the issue tracker [https://github.com/waveform80/picraft/issues] on
GitHub, or even edit this document yourself and add frequently asked questions
you’ve seen on other forums!

7.1. Why?

The most commonly asked question at this stage is: why build picraft at all?
Doesn’t mcpi work well enough? It certainly works, but it’s inconsistent with
PEP-8 [https://www.python.org/dev/peps/pep-0008/] (camelCase everywhere, getters and setters, which always leads to
questions when we’re teaching it in combination with other libraries), wasn’t
Python 3 compatible (when I started writing picraft, although it is now), has
several subtle bugs (Block’s hash, Vec3’s floor rounding), and I’m not
particularly fond of many of its design choices (mutable vectors being the
primary one).

There have been many attempts at extending mcpi (Martin O’Hanlon’s excellent
minecraft-stuff library being one of the best known), but none of the
extensions could correct the flaws in the core library itself, and I thought
several of the extensions probably should’ve been core functionality anyway.

8. API Reference

The picraft package consists of several modules which permit access to and
modification of a Minecraft world. The package is intended as an alternative
Python API to the “official” Minecraft Python API (for reasons explained in the
Frequently Asked Questions).

The classes defined in most modules of this package are available directly
from the picraft namespace. In other words, the following code is
typically all that is required to access classes in this package:

import picraft

For convenience on the command line you may prefer to simply do the following:

from picraft import *

However, this is frowned upon in code as it pulls everything into the global
namespace, so you may prefer to do something like this:

from picraft import World, Vector, Block

This is the style used in the Recipes chapter. Sometimes, if you are
using the Vector class extensively, you may wish to
use the short-cuts for it:

from picraft import World, V, O, X, Y, Z, Block

The following sections document the various modules available within the
package:

	API - The World class

	API - The Block class

	API - Vector, vector_range, etc.

	API - Events

	API - Connections and Batches

	API - Players

	API - Exceptions

9. API - The World class

The world module defines the World class, which is the usual way of
starting a connection to a Minecraft server and which then provides various
attributes allowing the user to query and manipulate that world.

Note

All items in this module are available from the picraft namespace
without having to import picraft.world directly.

The following items are defined in the module:

9.1. World

	
class picraft.world.World(host=u'localhost', port=4711, timeout=1.0, ignore_errors=True)

	Represents a Minecraft world.

This is the primary class that users interact with. Construct an instance
of this class, optionally specifying the host and port of the server
(which default to “localhost” and 4711 respectively). Afterward, the
instance can be used to query and manipulate the minecraft world of the
connected game.

The say() method can be used to send commands to the console, while
the player attribute can be used to manipulate or query the status
of the player character in the world. The players attribute can be
used to manipulate or query other players within the world (this object can
be iterated over to discover players):

>>> from picraft import *
>>> world = World()
>>> len(world.players)
1
>>> world.say('Hello, world!')

	
say(message)

	Displays message in the game’s chat console.

The message parameter must be a string (which may contain multiple
lines). Each line of the message will be sent to the game’s chat
console and displayed immediately. For example:

>>> world.say('Hello, world!')
>>> world.say('The following player IDs exist:\n%s' %
... '\n'.join(str(p) for p in world.players))

	
blocks

	Represents the state of blocks in the Minecraft world.

This property can be queried to determine the type of a block in the
world, or can be set to alter the type of a block. The property can be
indexed with a single Vector, in which case
the state of a single block is returned (or updated) as a
Block object:

>>> world.blocks[g.player.tile_pos]
<Block "grass" id=2 data=0>

Alternatively, a slice of vectors can be used. In this case, when
querying the property, a sequence of Block
objects is returned, When setting a slice of vectors you can either
pass a sequence of Block objects or a single
Block object:

>>> world.blocks[Vector(0,0,0):Vector(2,1,1)]
[<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
>>> world.blocks[Vector(0,0,0):Vector(5,1,5)] = Block.from_name('grass')

As with normal Python slices, the interval specified is half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html].
That is to say, it is inclusive of the lower vector, exclusive of the
upper one. Hence, Vector():Vector(x=5,1,1) represents the
coordinates (0,0,0) to (4,0,0). It is usually useful to specify the
upper bound as the vector you want and then add one to it:

>>> world.blocks[Vector():Vector(x=1) + 1]
[<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
>>> world.blocks[Vector():Vector(4,0,4) + 1] = Block.from_name('grass')

Finally, you can query an arbitrary collection of vectors. In this case
a sequence of blocks will be returned in the same order as the
collection of vectors. You can also use this when setting blocks:

>>> d = {
... Vector(): Block('air'),
... Vector(x=1): Block('air'),
... Vector(z=1): Block('stone'),
... }
>>> l = list(d)
>>> l
[<Vector x=0, y=0, z=0>,<Vector x=1, y=0, z=0>,<Vector x=0, y=0, z=1>]
>>> world.blocks[l]
[<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
>>> world.blocks[d.keys()] = d.values()

Warning

Querying or setting sequences of blocks can be extremely slow as a
network transaction must be executed for each individual block.
When setting a slice of blocks, this can be speeded up by
specifying a single Block in which case one
network transaction will occur to set all blocks in the slice. The
Raspberry Juice server also supports querying sequences of blocks
with a single command (picraft will automatically use this).
Additionally, batch_start()
can be used to speed up setting sequences of blocks (though not
querying).

	
camera

	Represents the camera of the Minecraft world.

The Camera object contained in this property permits control
of the position of the virtual camera in the Minecraft world. For
example, to position the camera directly above the host player:

>>> world.camera.third_person(world.player)

Alternatively, to see through the eyes of a specific player:

>>> world.camera.first_person(world.players[2])

Warning

Camera control is only supported on Minecraft Pi edition.

	
checkpoint

	Represents the Minecraft world checkpoint system.

The Checkpoint object contained in this attribute provides the
ability to save and restore the state of the world at any time:

>>> world.checkpoint.save()
>>> world.blocks[Vector()] = Block.from_name('stone')
>>> world.checkpoint.restore()

	
connection

	Represents the connection to the Minecraft server.

The Connection object contained in this
attribute represents the connection to the Minecraft server and
provides various methods for communicating with it. Users will very
rarely need to access this attribute, except to use the
batch_start() method.

	
events

	Provides an interface to poll events that occur in the Minecraft world.

The Events object contained in this property
provides methods for determining what is happening in the Minecraft
world:

>>> events = world.events.poll()
>>> len(events)
3
>>> events[0]
<BlockHitEvent pos=1,1,1 face="x+" player=1>
>>> events[0].player.pos
<Vector x=0.5, y=0.0, z=0.5>

	
height

	Represents the height of the Minecraft world.

This property can be queried to determine the height of the world at
any location. The property can be indexed with a single
Vector, in which case the height will be
returned as a vector with the same X and Z coordinates, but a Y
coordinate adjusted to the first non-air block from the top of the
world:

>>> world.height[Vector(0, -10, 0)]
Vector(x=0, y=0, z=0)

Alternatively, a slice of two vectors can be used. In this case, the
property returns a sequence of Vector objects
each with their Y coordinates adjusted to the height of the world at
the respective X and Z coordinates.

	
immutable

	Write-only property which sets whether the world is changeable.

Warning

World settings are only supported on Minecraft Pi edition.

Note

Unfortunately, the underlying protocol provides no means of reading
a world setting, so this property is write-only (attempting to
query it will result in an AttributeError [https://docs.python.org/3.4/library/exceptions.html#AttributeError] being raised).

	
nametags_visible

	Write-only property which sets whether players’ nametags are visible.

Warning

World settings are only supported on Minecraft Pi edition.

Note

Unfortunately, the underlying protocol provides no means of reading
a world setting, so this property is write-only (attempting to
query it will result in an AttributeError [https://docs.python.org/3.4/library/exceptions.html#AttributeError] being raised).

	
player

	Represents the host player in the Minecraft world.

The HostPlayer object returned by this
attribute provides properties which can be used to query the status of,
and manipulate the state of, the host player in the Minecraft world:

>>> world.player.pos
Vector(x=-2.49725, y=18.0, z=-4.21989)
>>> world.player.tile_pos += Vector(y=50)

	
players

	Represents all player entities in the Minecraft world.

This property can be queried to determine which players are currently
in the Minecraft world. The property is a mapping of player id (an
integer number) to a Player object which
permits querying and manipulation of the player. The property supports
many of the methods of dicts and can be iterated over like a dict:

>>> len(world.players)
1
>>> list(world.players)
[1]
>>> world.players.keys()
[1]
>>> world.players[1]
<picraft.player.Player at 0x7f2f91f38cd0>
>>> world.players.values()
[<picraft.player.Player at 0x7f2f91f38cd0>]
>>> world.players.items()
[(1, <picraft.player.Player at 0x7f2f91f38cd0>)]
>>> for player in world.players:
... print(player.tile_pos)
...
-3,18,-5

On the Raspberry Juice platform, you can also use player name to
reference players:

>>> world.players['my_player']
<picraft.player.Player at 0x7f2f91f38cd0>

9.2. Checkpoint

	
class picraft.world.Checkpoint(connection)

	Permits restoring the world state from a prior save.

This class provides methods for storing the state of the Minecraft world,
and restoring the saved state at a later time. The save() method
saves the state of the world, and the restore() method restores
the saved state.

This class can be used as a context manager to take a checkpoint, make
modifications to the world, and roll them back if an exception occurs.
For example, the following code will ultimately do nothing because an
exception occurs after the alteration:

>>> from picraft import *
>>> w = World()
>>> with w.checkpoint:
... w.blocks[w.player.tile_pos - Vector(y=1)] = Block.from_name('stone')
... raise Exception()

Warning

Checkpoints are only supported on Minecraft Pi edition.

Warning

Minecraft only permits a single checkpoint to be stored at any given
time. There is no capability to save multiple checkpoints and no way of
checking whether one currently exists. Therefore, storing a checkpoint
may overwrite an older checkpoint without warning.

Note

Checkpoints don’t work within batches as the checkpoint save will be
batched along with everything else. That said, a checkpoint can be used
outside a batch to roll the entire thing back if it fails:

>>> v = w.player.tile_pos - Vector(y=1)
>>> with w.checkpoint:
... with w.connection.batch_start():
... w.blocks[v - Vector(2, 0, 2):v + Vector(2, 1, 2)] = [
... Block.from_name('wool', data=i) for i in range(16)]

	
restore()

	Restore the state of the Minecraft world from a previously saved
checkpoint. No facility is provided to determine whether a prior
checkpoint is available (the underlying network protocol doesn’t permit
this).

	
save()

	Save the state of the Minecraft world, overwriting any prior checkpoint
state.

9.3. Camera

	
class picraft.world.Camera(connection)

	This class implements the camera attribute.

	
first_person(player)

	Causes the camera to view the world through the eyes of the specified
player. The player can be the player attribute
(representing the host player) or an attribute retrieved from the
players list. For example:

>>> from picraft import World
>>> w = World()
>>> w.camera.first_person(w.player)
>>> w.camera.first_person(w.players[1])

	
third_person(player)

	Causes the camera to follow the specified player from above. The
player can be the player attribute (representing the
host player) or an attribute retrieved from the players
list. For example:

>>> from picraft import World
>>> w = World()
>>> w.camera.third_person(w.player)
>>> w.camera.third_person(w.players[1])

	
pos

	Write-only property which sets the camera’s absolute position in the
world.

Note

Unfortunately, the underlying protocol provides no means of reading
this setting, so this property is write-only (attempting to query
it will result in an AttributeError [https://docs.python.org/3.4/library/exceptions.html#AttributeError] being raised).

10. API - The Block class

The block module defines the Block class, which is used to represent
the type of a block and any associated data it may have, and the class which is
used to implement the blocks attribute on the
World class.

Note

All items in this module, except the compatibility constants, are available
from the picraft namespace without having to import
picraft.block directly.

The following items are defined in the module:

10.1. Block

	
class picraft.block.Block(id, data)

	Represents a block within the Minecraft world.

Blocks within the Minecraft world are represented by two values: an id
which defines the type of the block (air, stone, grass, wool, etc.) and an
optional data value (defaults to 0) which means different things for
different block types (e.g. for wool it defines the color of the wool).

Blocks are represented by this library as a namedtuple() [https://docs.python.org/3.4/library/collections.html#collections.namedtuple]
of the id and the data. Calculated properties are provided to look up
the name and description of the block from a database
derived from the Minecraft wiki, and classmethods are defined to construct
a block definition from an id or from alternate things
like a name or an RGB color:

>>> Block.from_id(0, 0)
<Block "air" id=0 data=0>
>>> Block.from_id(2, 0)
<Block "grass" id=2 data=0>
>>> Block.from_name('stone')
<Block "stone" id=1 data=0>
>>> Block.from_color('#ffffff')
<Block "wool" id=35 data=0>

The default constructor attempts to guess which classmethod to call based
on the following rules (in the order given):

	If the constructor is passed a string beginning with ‘#’ that is 7
characters long, it calls from_color()

	If the constructor is passed a tuple containing 3 values, it calls
from_color()

	If the constructor is passed a string (not matching the case above)
it calls from_name()

	Otherwise the constructor calls from_id() with all given
parameters

This means that the examples above can be more easily written:

>>> Block(0, 0)
<Block "air" id=0 data=0>
>>> Block(2, 0)
<Block "grass" id=2 data=0>
>>> Block('stone')
<Block "stone" id=1 data=0>
>>> Block('#ffffff')
<Block "wool" id=35 data=0>

Aliases are provided for compatibility with the official reference
implementation (AIR, GRASS, STONE, etc):

>>> import picraft.block
>>> picraft.block.WATER
<Block "flowing_water" id=8 data=0>

	
classmethod from_color(color, exact=False)

	Construct a Block instance from a color which can be
represented as:

	A tuple of (red, green, blue) integer byte values between 0 and
255

	A tuple of (red, green, blue) float values between 0.0 and 1.0

	A string in the format ‘#rrggbb’ where rr, gg, and bb are hexadecimal
representations of byte values.

If exact is False (the default), and an exact match for the
requested color cannot be found, the nearest color (determined simply
by Euclidian distance) is returned. If exact is True and an exact
match cannot be found, a ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised:

>>> from picraft import *
>>> Block.from_color('#ffffff')
<Block "wool" id=35 data=0>
>>> Block.from_color('#ffffff', exact=True)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "picraft/block.py", line 351, in from_color
 if exact:
ValueError: no blocks match color #ffffff
>>> Block.from_color((1, 0, 0))
<Block "wool" id=35 data=14>

Note that calling the default constructor with any of the formats
accepted by this method is equivalent to calling this method:

>>> Block('#ffffff')
<Block "wool" id=35 data=0>

	
classmethod from_id(id, data=0)

	Construct a Block instance from an id integer. This may be
used to construct blocks in the classic manner; by specifying a number
representing the block’s type, and optionally a data value. For
example:

>>> from picraft import *
>>> Block.from_id(1)
<Block "stone" id=1 data=0>
>>> Block.from_id(2, 0)
<Block "grass" id=2 data=0>

The optional data parameter defaults to 0. Note that calling the
default constructor with an integer parameter is equivalent to calling
this method:

>>> Block(1)
<Block "stone" id=1" data=0>

	
classmethod from_name(name, data=0)

	Construct a Block instance from a name, as returned by the
name property. This may be used to construct blocks in a more
“friendly” way within code. For example:

>>> from picraft import *
>>> Block.from_name('stone')
<Block "stone" id=1 data=0>
>>> Block.from_name('wool', data=2)
<Block "wool" id=35 data=2>

The optional data parameter can be used to specify the data component
of the new Block instance; it defaults to 0. Note that calling
the default constructor with a string that doesn’t start with “#” is
equivalent to calling this method:

>>> Block('stone')
<Block "stone" id=1 data=0>

	
id

	The “id” or type of the block. Each block type in Minecraft has a
unique value. For example, air blocks have the id 0, stone, has id 1,
and so forth. Generally it is clearer in code to refer to a block’s
name but it may be quicker to use the id.

	
data

	Certain types of blocks have variants which are dictated by the data
value associated with them. For example, the color of a wool block
is determined by the data attribute (e.g. white is 0, red is 14,
and so on).

	
pi

	Returns a bool indicating whether the block is present in the Pi
Edition of Minecraft.

	
pocket

	Returns a bool indicating whether the block is present in the Pocket
Edition of Minecraft.

	
name

	Return the name of the block. This is a unique identifier string which
can be used to construct a Block instance with
from_name().

	
description

	Return a description of the block. This string is not guaranteed to be
unique and is only intended for human use.

	
COLORS

	A class attribute containing a sequence of the colors available for
use with from_color().

	
NAMES

	A class attribute containing a sequence of the names available for
use with from_name().

10.2. Compatibility

Finally, the module also contains compatibility values equivalent to those
in the mcpi.block module of the reference implementation. Each value represents
the type of a block with no associated data:

	AIR

	FURNACE_ACTIVE

	MUSHROOM_RED

	BED

	FURNACE_INACTIVE

	NETHER_REACTOR_CORE

	BEDROCK

	GLASS

	OBSIDIAN

	BEDROCK_INVISIBLE

	GLASS_PANE

	REDSTONE_ORE

	BOOKSHELF

	GLOWING_OBSIDIAN

	SAND

	BRICK_BLOCK

	GLOWSTONE_BLOCK

	SANDSTONE

	CACTUS

	GOLD_BLOCK

	SAPLING

	CHEST

	GOLD_ORE

	SNOW

	CLAY

	GRASS

	SNOW_BLOCK

	COAL_ORE

	GRASS_TALL

	STAIRS_COBBLESTONE

	COBBLESTONE

	GRAVEL

	STAIRS_WOOD

	COBWEB

	ICE

	STONE

	CRAFTING_TABLE

	IRON_BLOCK

	STONE_BRICK

	DIAMOND_BLOCK

	IRON_ORE

	STONE_SLAB

	DIAMOND_ORE

	LADDER

	STONE_SLAB_DOUBLE

	DIRT

	LAPIS_LAZULI_BLOCK

	SUGAR_CANE

	DOOR_IRON

	LAPIS_LAZULI_ORE

	TNT

	DOOR_WOOD

	LAVA

	TORCH

	FARMLAND

	LAVA_FLOWING

	WATER

	FENCE

	LAVA_STATIONARY

	WATER_FLOWING

	FENCE_GATE

	LEAVES

	WATER_STATIONARY

	FIRE

	MELON

	WOOD

	FLOWER_CYAN

	MOSS_STONE

	WOOD_PLANKS

	FLOWER_YELLOW

	MUSHROOM_BROWN

	WOOL

Use these compatibility constants by importing the block module explicitly.
For example:

>>> from picraft import block
>>> block.AIR
<Block "air" id=0 data=0>
>>> block.TNT
<Block "tnt" id=46 data=0>

11. API - Vector, vector_range, etc.

The vector module defines the Vector class, which is the usual method
of representing coordinates or vectors when dealing with the Minecraft world.
It also provides functions like vector_range() for generating sequences
of vectors.

Note

All items in this module are available from the picraft namespace
without having to import picraft.vector directly.

The following items are defined in the module:

11.1. Vector

	
class picraft.vector.Vector(x=0, y=0, z=0)

	Represents a 3-dimensional vector.

This namedtuple() [https://docs.python.org/3.4/library/collections.html#collections.namedtuple] derivative represents a 3-dimensional
vector with x, y, z components. Instances can be
constructed in a number of ways: by explicitly specifying the x, y, and z
components (optionally with keyword identifiers), or leaving them empty to
default to 0:

>>> Vector(1, 1, 1)
Vector(x=1, y=1, z=1)
>>> Vector(x=2, y=0, z=0)
Vector(x=2, y=0, z=0)
>>> Vector()
Vector(x=0, y=0, z=0)
>>> Vector(y=10)
Vector(x=0, y=10, z=0)

Shortcuts are available for vectors representing the X, Y, and Z axes:

>>> X
Vector(x=1, y=0, z=0)
>>> Y
Vector(x=0, y=1, z=0)

Note that vectors don’t much care whether their components are integers,
floating point values, or None:

>>> Vector(1.0, 1, 1)
Vector(x=1.0, y=1, z=1)
>>> Vector(2, None, None)
Vector(x=2, y=None, z=None)

The class supports simple arithmetic operations with other vectors such as
addition and subtraction, along with multiplication and division, raising
to powers, bit-shifting, and so on. Such operations are performed
element-wise 1:

>>> v1 = Vector(1, 1, 1)
>>> v2 = Vector(2, 2, 2)
>>> v1 + v2
Vector(x=3, y=3, z=3)
>>> v1 * v2
Vector(x=2, y=2, z=2)

Simple arithmetic operations with scalars return a new vector with that
operation performed on all elements of the original. For example:

>>> v = Vector()
>>> v
Vector(x=0, y=0, z=0)
>>> v + 1
Vector(x=1, y=1, z=1)
>>> 2 * (v + 2)
Vector(x=4, y=4, z=4)
>>> Vector(y=2) ** 2
Vector(x=0, y=4, z=0)

Within the Minecraft world, the X,Z plane represents the ground, while the
Y vector represents height.

Note

Note that, as a derivative of namedtuple() [https://docs.python.org/3.4/library/collections.html#collections.namedtuple],
instances of this class are immutable. That is, you cannot directly
manipulate the x, y, and z attributes; instead
you must create a new vector (for example, by adding two vectors
together). The advantage of this is that vector instances can be
members of a set [https://docs.python.org/3.4/library/stdtypes.html#set] or keys in a dict [https://docs.python.org/3.4/library/stdtypes.html#dict].

	1

	I realize math purists will hate this (and demand that abs() should
be magnitude and * should invoke matrix multiplication), but the
element wise operations are sufficiently useful to warrant the
short-hand syntax.

	
replace(x=None, y=None, z=None)

	Return the vector with the x, y, or z axes replaced with the specified
values. For example:

>>> Vector(1, 2, 3).replace(z=4)
Vector(x=1, y=2, z=4)

	
ceil()

	Return the vector with the ceiling of each component. This is only
useful for vectors containing floating point components:

>>> Vector(0.5, -0.5, 1.2)
Vector(1.0, 0.0, 2.0)

	
floor()

	Return the vector with the floor of each component. This is only useful
for vectors containing floating point components:

>>> Vector(0.5, -0.5, 1.9)
Vector(0.0, -1.0, 1.0)

	
dot(other)

	Return the dot product [http://en.wikipedia.org/wiki/Dot_product] of the vector with the other vector. The
result is a scalar value. For example:

>>> Vector(1, 2, 3).dot(Vector(2, 2, 2))
12
>>> Vector(1, 2, 3).dot(X)
1

	
cross(other)

	Return the cross product [http://en.wikipedia.org/wiki/Cross_product] of the vector with the other vector. The
result is another vector. For example:

>>> Vector(1, 2, 3).cross(Vector(2, 2, 2))
Vector(x=-2, y=4, z=-2)
>>> Vector(1, 2, 3).cross(X)
Vector(x=0, y=3, z=-2)

	
distance_to(other)

	Return the Euclidian distance between two three dimensional points
(represented as vectors), calculated according to Pythagoras’
theorem [http://en.wikipedia.org/wiki/Pythagorean_theorem]. For example:

>>> Vector(1, 2, 3).distance_to(Vector(2, 2, 2))
1.4142135623730951
>>> O.distance_to(X)
1.0

	
angle_between(other)

	Returns the angle between this vector and the other vector on a plane
that contains both vectors. The result is measured in degrees between 0
and 180. For example:

>>> X.angle_between(Y)
90.0
>>> (X + Y).angle_between(X)
45.00000000000001

	
project(other)

	Return the scalar projection [https://en.wikipedia.org/wiki/Scalar_projection] of this vector onto the other vector.
This is a scalar indicating the length of this vector in the direction
of the other vector. For example:

>>> Vector(1, 2, 3).project(2 * Y)
2.0
>>> Vector(3, 4, 5).project(Vector(3, 4, 0))
5.0

	
rotate(angle, about, origin=None)

	Return this vector after rotation [https://en.wikipedia.org/wiki/Rotation_group_SO%283%29] of angle degrees about the line
passing through origin in the direction about. Origin defaults to
the vector 0, 0, 0. Hence, if this parameter is omitted this method
calculates rotation about the axis (through the origin) defined by
about. For example:

>>> Y.rotate(90, about=X)
Vector(x=0, y=6.123233995736766e-17, z=1.0)
>>> Vector(3, 4, 5).rotate(30, about=X, origin=10 * Y)
Vector(x=3.0, y=2.3038475772933684, z=1.330127018922194)

Information about rotation around arbitrary lines was obtained from
Glenn Murray’s informative site [http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/].

	
x

	The position or length of the vector along the X-axis. In the Minecraft
world this can be considered to run left-to-right.

	
y

	The position or length of the vector along the Y-axis. In the Minecraft
world this can be considered to run vertically up and down.

	
z

	The position or length of the vector along the Z-axis. In the Minecraft
world this can be considered as depth (in or out of the screen).

	
magnitude

	Returns the magnitude of the vector. This could also be considered the
distance of the vector from the origin, i.e. v.magnitude is
equivalent to Vector().distance_to(v). For example:

>>> Vector(2, 4, 4).magnitude
6.0
>>> Vector().distance_to(Vector(2, 4, 4))
6.0

	
unit

	Return a unit vector [http://en.wikipedia.org/wiki/Unit_vector] (a vector with a magnitude of one) with the
same direction as this vector:

>>> X.unit
Vector(x=1.0, y=0.0, z=0.0)
>>> (2 * Y).unit
Vector(x=0.0, y=1.0, z=0.0)

Note

If the vector’s magnitude is zero, this property returns the
original vector.

11.2. Short-hand variants

The Vector class is used sufficiently often to justify the inclusion
of some shortcuts. The class itself is also available as V, and vectors
representing the three axes are each available as X, Y, and Z.
Finally, a vector representing the origin is available as O:

>>> from picraft import V, O, X, Y, Z
>>> O
Vector(x=0, y=0, z=0)
>>> 2 * X
Vector(x=2, y=0, z=0)
>>> X + Y
Vector(x=1, y=1, z=0)
>>> (X + Y).angle_between(X)
45.00000000000001
>>> V(3, 4, 5).projection(X)
3.0
>>> X.rotate(90, about=Y)
Vector(x=0.0, y=0.0, z=1.0)

11.3. vector_range

	
class picraft.vector.vector_range(start, stop=None, step=None, order=u'zxy')

	Like range(), vector_range is actually a type which
efficiently represents a range of vectors. The arguments to the constructor
must be Vector instances (or objects which have integer x,
y, and z attributes).

If step is omitted, it defaults to Vector(1, 1, 1). If the start
argument is omitted, it defaults to Vector(0, 0, 0). If any element
of the step vector is zero, ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] is raised.

The contents of the range are largely determined by the step and order
which specifies the order in which the axes of the range will be
incremented. For example, with the order 'xyz', the X-axis will be
incremented first, followed by the Y-axis, and finally the Z-axis. So, for
a range with the default start, step, and stop set to Vector(3, 3,
3), the contents of the range will be:

>>> list(vector_range(Vector(3, 3, 3), order='xyz'))
[Vector(0, 0, 0), Vector(1, 0, 0), Vector(2, 0, 0),
 Vector(0, 1, 0), Vector(1, 1, 0), Vector(2, 1, 0),
 Vector(0, 2, 0), Vector(1, 2, 0), Vector(2, 2, 0),
 Vector(0, 0, 1), Vector(1, 0, 1), Vector(2, 0, 1),
 Vector(0, 1, 1), Vector(1, 1, 1), Vector(2, 1, 1),
 Vector(0, 2, 1), Vector(1, 2, 1), Vector(2, 2, 1),
 Vector(0, 0, 2), Vector(1, 0, 2), Vector(2, 0, 2),
 Vector(0, 1, 2), Vector(1, 1, 2), Vector(2, 1, 2),
 Vector(0, 2, 2), Vector(1, 2, 2), Vector(2, 2, 2)]

Vector ranges implement all common sequence operations except concatenation
and repetition (due to the fact that range objects can only represent
sequences that follow a strict pattern and repetition and concatenation
usually cause the resulting sequence to violate that pattern).

Vector ranges are extremely efficient compared to an equivalent
list() or tuple() as they take a small (fixed) amount of
memory, storing only the arguments passed in its construction and
calculating individual items and sub-ranges as requested.

Vector range objects implement the collections.Sequence ABC,
and provide features such as containment tests, element index lookup,
slicing and support for negative indices.

The default order ('zxy') may seem an odd choice. This is primarily
used as it’s the order used by the Raspberry Juice server when returning
results from the world.getBlocks call. In turn, Raspberry Juice
probably uses this order as it results in returning a horizontal layer of
vectors at a time (given the Y-axis is used for height in the Minecraft
world).

Warning

Bear in mind that the ordering of a vector range may have affect tests
for its ordering and equality. Two ranges with different orders are
unlikely to test equal even though they may have the same start,
stop, and step attributes (and thus contain the same vectors, but
in a different order).

Vector ranges can be accessed by integer index, by Vector index,
or by a slice of vectors. For example:

>>> v = vector_range(Vector() + 1, Vector() + 3)
>>> list(v)
[Vector(x=1, y=1, z=1),
 Vector(x=1, y=1, z=2),
 Vector(x=2, y=1, z=1),
 Vector(x=2, y=1, z=2),
 Vector(x=1, y=2, z=1),
 Vector(x=1, y=2, z=2),
 Vector(x=2, y=2, z=1),
 Vector(x=2, y=2, z=2)]
>>> v[0]
Vector(x=1, y=1, z=1)
>>> v[Vector(0, 0, 0)]
Vector(x=1, y=1, z=1)
>>> v[Vector(1, 0, 0)]
Vector(x=2, y=1, z=1)
>>> v[-1]
Vector(x=2, y=2, z=2)
>>> v[Vector() - 1]
Vector(x=2, y=2, z=2)
>>> v[Vector(x=1):]
vector_range(Vector(x=2, y=1, z=1), Vector(x=3, y=3, z=3),
 Vector(x=1, y=1, z=1), order='zxy')
>>> list(v[Vector(x=1):])
[Vector(x=2, y=1, z=1),
 Vector(x=2, y=1, z=2),
 Vector(x=2, y=2, z=1),
 Vector(x=2, y=2, z=2)]

However, integer slices are not currently permitted.

	
count(value)

	Return the count of instances of value within the range (note this
can only be 0 or 1 in the case of a range, and thus is equivalent to
testing membership with in).

	
index(value)

	Return the zero-based index of value within the range, or raise
ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] if value does not exist in the range.

11.4. line

	
picraft.vector.line(start, end)

	Generates the coordinates of a line joining the start and end
Vector instances inclusive. This is a generator function; points
are yielded from start, proceeding to end. If you don’t require all
points you may terminate the generator at any point.

For example:

>>> list(line(O, V(10, 5, 0)))
[Vector(x=0, y=0, z=0),
 Vector(x=1, y=1, z=0),
 Vector(x=2, y=1, z=0),
 Vector(x=3, y=2, z=0),
 Vector(x=4, y=2, z=0),
 Vector(x=5, y=3, z=0),
 Vector(x=6, y=3, z=0),
 Vector(x=7, y=4, z=0),
 Vector(x=8, y=4, z=0),
 Vector(x=9, y=5, z=0),
 Vector(x=10, y=5, z=0)]

To draw the resulting line you can simply assign a block to the collection
of vectors generated (or assign a sequence of blocks of equal length if you
want the line to have varying block types):

>>> world.blocks[line(O, V(10, 5, 0))] = Block('stone')

This is a three-dimensional implementation of Bresenham’s line
algorithm [https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm], derived largely from Bob Pendelton’s implementation [ftp://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d] (public
domain).

11.5. lines

	
picraft.vector.lines(points, closed=True)

	Generator function which extends the line() function; this yields all
vectors necessary to render the lines connecting the specified points
(which is an iterable of Vector instances).

If the optional closed parameter is True (the default) the last point
in the points sequence will be connected to the first point. Otherwise,
the lines will be left disconnected (assuming the last point is not
coincident with the first). For example:

>>> points = [O, 4*X, 4*Z]
>>> list(lines(points))
[Vector(x=0, y=0, z=0),
 Vector(x=1, y=0, z=0),
 Vector(x=2, y=0, z=0),
 Vector(x=3, y=0, z=0),
 Vector(x=4, y=0, z=0),
 Vector(x=3, y=0, z=1),
 Vector(x=2, y=0, z=2),
 Vector(x=1, y=0, z=3),
 Vector(x=0, y=0, z=4),
 Vector(x=0, y=0, z=3),
 Vector(x=0, y=0, z=2),
 Vector(x=0, y=0, z=1),
 Vector(x=0, y=0, z=0)]

To draw the resulting polygon you can simply assign a block to the
collection of vectors generated (or assign a sequence of blocks of equal
length if you want the polygon to have varying block types):

>>> world.blocks[lines(points)] = Block('stone')

To generate the coordinates of a filled polygon, see the filled()
function.

11.6. circle

	
picraft.vector.circle(center, radius, plane=Vector(x=0, y=1, z=0))

	Generator function which yields the coordinates of a three-dimensional
circle centered at the Vector center. The radius parameter is
a vector specifying the distance of the circumference from the center. The
optional plane parameter (which defaults to the Y unit vector) specifies
another vector which, in combination with the radius vector, gives the
plane that the circle exists within.

For example, to generate the coordinates of a circle centered at (0, 10,
0), with a radius of 5 units, existing in the X-Y plane:

>>> list(circle(O, 5*X))
[Vector(x=-5, y=0, z=0), ...]

To generate another set of coordinates with the same center and radius, but
existing in the X-Z (ground) plane:

>>> list(circle(O, 5*X, plane=Z))
[Vector(x=-5, y=0, z=0), ...]

To draw the resulting circle you can simply assign a block to the
collection of vectors generated (or assign a sequence of blocks of equal
length if you want the circle to have varying block types):

>>> world.blocks[circle(O, 5*X)] = Block('stone')

The algorithm used by this function is based on the midpoint circle
algorithm [https://en.wikipedia.org/wiki/Midpoint_circle_algorithm] (also known as a the Bresenham circle algorithm), but isn’t
restricted to working in a simple cartesian plane. It does compute the
Bresenham circle on the X-Y plane and then determines the rotation required
to move the Z axis into the normal generated by the radius vector and the
plane vector

To create a filled circle, see the filled() function.

11.7. sphere

	
picraft.vector.sphere(center, radius)

	Generator function which yields the coordinates of a hollow sphere. The
center Vector specifies the center of the sphere, and radius
is a scalar number of blocks giving the distance from the center to the
edge of the sphere.

For example to create the coordinates of a sphere centered at the origin
with a radius of 5 units:

>>> list(sphere(O, 5))

To draw the resulting sphere you can simply assign a block to the
collection of vectors generated (or assign a sequence of blocks of equal
length if you want the sphere to have varying block types):

>>> world.blocks[sphere(O, 5)] = Block('stone')

The algorithm generates concentric circles covering the sphere’s surface,
advancing along the X, Y, and Z axes with duplicate elimination to prevent
repeated coordinates being yielded. Three axes are required to eliminate
gaps in the surface.

11.8. filled

	
picraft.vector.filled(points)

	Generator function which yields the coordinates necessary to fill the space
enclosed by the specified points.

This function can be applied to anything that returns a sequence of points.
For example, to create a filled triangle:

>>> triangle = [O, 4*X, 4*Z]
>>> list(filled(lines(triangle)))
[Vector(x=0, y=0, z=0), Vector(x=0, y=0, z=1), Vector(x=0, y=0, z=2),
 Vector(x=0, y=0, z=3), Vector(x=0, y=0, z=4), Vector(x=1, y=0, z=2),
 Vector(x=1, y=0, z=1), Vector(x=1, y=0, z=0), Vector(x=1, y=0, z=3),
 Vector(x=2, y=0, z=1), Vector(x=2, y=0, z=0), Vector(x=2, y=0, z=2),
 Vector(x=3, y=0, z=1), Vector(x=3, y=0, z=0), Vector(x=4, y=0, z=0)]

Or to create a filled circle:

>>> list(filled(circle(O, 4*X)))
[Vector(x=-4, y=0, z=0), Vector(x=-3, y=-1, z=0), Vector(x=-3, y=-2, z=0),
 Vector(x=-3, y=0, z=0), Vector(x=-3, y=1, z=0), Vector(x=-3, y=2, z=0),
 Vector(x=-2, y=-1, z=0), Vector(x=-2, y=-2, z=0), Vector(x=-2, y=-3, z=0),
 Vector(x=-2, y=0, z=0), Vector(x=-2, y=1, z=0), Vector(x=-2, y=2, z=0),
 Vector(x=-2, y=3, z=0), Vector(x=-1, y=0, z=0), Vector(x=-1, y=-1, z=0),
 Vector(x=-1, y=-2, z=0), Vector(x=-1, y=-3, z=0), Vector(x=-1, y=1, z=0),
 Vector(x=-1, y=2, z=0), Vector(x=-1, y=3, z=0), Vector(x=0, y=-1, z=0),
 Vector(x=0, y=-2, z=0), Vector(x=0, y=-3, z=0), Vector(x=0, y=-4, z=0),
 Vector(x=0, y=0, z=0), Vector(x=0, y=1, z=0), Vector(x=0, y=2, z=0),
 Vector(x=0, y=3, z=0), Vector(x=0, y=4, z=0), Vector(x=1, y=0, z=0),
 Vector(x=1, y=-1, z=0), Vector(x=1, y=-2, z=0), Vector(x=1, y=-3, z=0),
 Vector(x=1, y=1, z=0), Vector(x=1, y=2, z=0), Vector(x=1, y=3, z=0),
 Vector(x=2, y=0, z=0), Vector(x=2, y=-1, z=0), Vector(x=2, y=-2, z=0),
 Vector(x=2, y=-3, z=0), Vector(x=2, y=1, z=0), Vector(x=2, y=2, z=0),
 Vector(x=2, y=3, z=0), Vector(x=3, y=0, z=0), Vector(x=3, y=-1, z=0),
 Vector(x=3, y=-2, z=0), Vector(x=3, y=1, z=0), Vector(x=3, y=2, z=0),
 Vector(x=4, y=0, z=0), Vector(x=4, y=-1, z=0), Vector(x=4, y=1, z=0)]

To draw the resulting filled object you can simply assign a block to the
collection of vectors generated (or assign a sequence of blocks of equal
length if you want the object to have varying block types):

>>> world.blocks[filled(lines(triangle))] = Block('stone')

A simple brute-force algorithm is used that simply generates all the lines
connecting all specified points. However, duplicate elimination is used to
ensure that no point within the filled space is yielded twice.

Note that if you pass the coordinates of a polyhedron which contains holes
or gaps compared to its convex hull, this function may fill those holes
or gaps (but it will depend on the orientation of the object).

12. API - Events

The events module defines the Events class, which provides methods for
querying events in the Minecraft world, and the BlockHitEvent,
PlayerPosEvent, ChatPostEvent, and IdleEvent classes
which represent the various event types.

Note

All items in this module are available from the picraft namespace
without having to import picraft.events directly.

The following items are defined in the module:

12.1. Events

	
class picraft.events.Events(connection, poll_gap=0.1, include_idle=False)

	This class implements the events attribute.

There are two ways of responding to picraft’s events: the first is to
poll() for them manually, and process each event in the resulting
list:

>>> for event in world.events.poll():
... print(repr(event))
...
<BlockHitEvent pos=1,1,1 face="y+" player=1>,
<PlayerPosEvent old_pos=0.2,1.0,0.7 new_pos=0.3,1.0,0.7 player=1>

The second is to “tag” functions as event handlers with the decorators
provided and then call the main_loop() function which will handle
polling the server for you, and call all the relevant functions as needed:

@world.events.on_block_hit(pos=Vector(1,1,1))
def hit_block(event):
 print('You hit the block at %s' % event.pos)

world.events.main_loop()

By default, only block hit events will be tracked. This is because it is
the only type of event that the Minecraft server provides information about
itself, and thus the only type of event that can be processed relatively
efficiently. If you wish to track player positions, assign a set of player
ids to the track_players attribute. If you wish to include idle
events (which fire when nothing else is produced in response to
poll()) then set include_idle to True.

Note

If you are using a Raspberry Juice server, chat post events are also
tracked by default. Chat post events are only supported with Raspberry
Juice servers; Minecraft Pi edition doesn’t support chat post events.

Finally, the poll_gap attribute specifies how long to pause during
each iteration of main_loop() to permit event handlers some time to
interact with the server. Setting this to 0 will provide the fastest
response to events, but will result in event handlers having to fight with
event polling for access to the server.

	
clear()

	Forget all pending events that have not yet been retrieved with
poll().

This method is used to clear the list of events that have occurred
since the last call to poll() without retrieving them. This is
useful for ensuring that events subsequently retrieved definitely
occurred after the call to clear().

	
has_handlers(cls)

	Decorator for registering a class as containing picraft event handlers.

If you are writing a class which contains methods that you wish to
use as event handlers for picraft events, you must decorate the class
with @has_handlers. This will ensure that picraft tracks instances
of the class and dispatches events to each instance that exists when
the event occurs.

For example:

from picraft import World, Block, Vector, X, Y, Z

world = World()

@world.events.has_handlers
class HitMe(object):
 def __init__(self, pos):
 self.pos = pos
 self.been_hit = False
 world.blocks[self.pos] = Block('diamond_block')

 @world.events.on_block_hit()
 def was_i_hit(self, event):
 if event.pos == self.pos:
 self.been_hit = True
 print('Block at %s was hit' % str(self.pos))

p = world.player.tile_pos
block1 = HitMe(p + 2*X)
block2 = HitMe(p + 2*Z)
world.events.main_loop()

Class-based handlers are an advanced feature and have some notable
limitations. For instance, in the example above the on_block_hit
handler couldn’t be declared with the block’s position because this was
only known at instance creation time, not at class creation time (which
was when the handler was registered).

Furthermore, class-based handlers must be regular instance methods
(those which accept the instance, self, as the first argument); they
cannot be class methods or static methods.

Note

The @has_handlers decorator takes no arguments and shouldn’t
be called, unlike event handler decorators.

	
main_loop()

	Starts the event polling loop when using the decorator style of event
handling (see on_block_hit()).

This method will not return, so be sure that you have specified all
your event handlers before calling it. The event loop can only be
broken by an unhandled exception, or by closing the world’s connection
(in the latter case the resulting ConnectionClosed
exception will be suppressed as it is assumed that you want to end the
script cleanly).

	
on_block_hit(thread=False, multi=True, pos=None, face=None)

	Decorator for registering a function/method as a block hit handler.

This decorator is used to mark a function as an event handler which
will be called for any events indicating a block has been hit while
main_loop() is executing. The function will be called with the
corresponding BlockHitEvent as the only argument.

The pos parameter can be used to specify a vector or sequence of
vectors (including a vector_range); in this
case the event handler will only be called for block hits on matching
vectors.

The face parameter can be used to specify a face or sequence of
faces for which the handler will be called.

For example, to specify that one handler should be called for hits
on the top of any blocks, and another should be called only for hits
on any face of block at the origin one could use the following code:

from picraft import World, Vector

world = World()

@world.events.on_block_hit(pos=Vector(0, 0, 0))
def origin_hit(event):
 world.say('You hit the block at the origin')

@world.events.on_block_hit(face="y+")
def top_hit(event):
 world.say('You hit the top of a block at %d,%d,%d' % event.pos)

world.events.main_loop()

The thread parameter (which defaults to False) can be used to
specify that the handler should be executed in its own background
thread, in parallel with other handlers.

Finally, the multi parameter (which only applies when thread is
True) specifies whether multi-threaded handlers should be allowed
to execute in parallel. When True (the default), threaded handlers
execute as many times as activated in parallel. When False, a
single instance of a threaded handler is allowed to execute at any
given time; simultaneous activations are ignored (but not queued, as
with unthreaded handlers).

	
on_chat_post(thread=False, multi=True, message=None)

	Decorator for registering a function/method as a chat event handler.

This decorator is used to mark a function as an event handler which
will be called for events indicating a chat message was posted to
the world while main_loop() is executing. The function will be
called with the corresponding ChatPostEvent as the only
argument.

Note

Only the Raspberry Juice server generates chat events; Minecraft
Pi Edition does not support this event type.

The message parameter can be used to specify a string or regular
expression; in this case the event handler will only be called for chat
messages which match this value. For example:

import re
from picraft import World, Vector

world = World()

@world.events.on_chat_post(message="hello world")
def echo(event):
 world.say("Hello player %d!" % event.player.player_id)

@world.events.on_chat_post(message=re.compile(r"teleport_me \d+,\d+,\d+"))
def teleport(event):
 x, y, z = event.message[len("teleport_me "):].split(",")
 event.player.pos = Vector(int(x), int(y), int(z))

world.events.main_loop()

The thread parameter (which defaults to False) can be used to
specify that the handler should be executed in its own background
thread, in parallel with other handlers.

Finally, the multi parameter (which only applies when thread is
True) specifies whether multi-threaded handlers should be allowed
to execute in parallel. When True (the default), threaded handlers
execute as many times as activated in parallel. When False, a
single instance of a threaded handler is allowed to execute at any
given time; simultaneous activations are ignored (but not queued, as
with unthreaded handlers).

	
on_idle(thread=False, multi=True)

	Decorator for registering a function/method as an idle handler.

This decorator is used to mark a function as an event handler which
will be called when no other event handlers have been called in an
iteration of main_loop(). The function will be called with the
corresponding IdleEvent as the only argument.

Note that idle events will only be generated if include_idle
is set to True.

	
on_player_pos(thread=False, multi=True, old_pos=None, new_pos=None)

	Decorator for registering a function/method as a position change
handler.

This decorator is used to mark a function as an event handler which
will be called for any events indicating that a player’s position has
changed while main_loop() is executing. The function will be
called with the corresponding PlayerPosEvent as the only
argument.

The old_pos and new_pos parameters can be used to specify vectors
or sequences of vectors (including a
vector_range) that the player position events
must match in order to activate the associated handler. For example, to
fire a handler every time any player enters or walks over blocks within
(-10, 0, -10) to (10, 0, 10):

from picraft import World, Vector, vector_range

world = World()
world.events.track_players = world.players

from_pos = Vector(-10, 0, -10)
to_pos = Vector(10, 0, 10)
@world.events.on_player_pos(new_pos=vector_range(from_pos, to_pos + 1))
def in_box(event):
 world.say('Player %d stepped in the box' % event.player.player_id)

world.events.main_loop()

Various effects can be achieved by combining old_pos and new_pos
filters. For example, one could detect when a player crosses a boundary
in a particular direction, or decide when a player enters or leaves a
particular area.

Note that only players specified in track_players will generate
player position events.

	
poll()

	Return a list of all events that have occurred since the last call to
poll().

For example:

>>> w = World()
>>> w.events.track_players = w.players
>>> w.events.include_idle = True
>>> w.events.poll()
[<PlayerPosEvent old_pos=0.2,1.0,0.7 new_pos=0.3,1.0,0.7 player=1>,
 <BlockHitEvent pos=1,1,1 face="x+" player=1>,
 <BlockHitEvent pos=1,1,1 face="x+" player=1>]
>>> w.events.poll()
[<IdleEvent>]

	
process()

	Poll the server for events and call any relevant event handlers
registered with on_block_hit().

This method is called repeatedly the event handler loop implemented by
main_loop(); developers should only call this method when
implementing their own event loop manually, or when their (presumably
non-threaded) event handler is engaged in a long operation and they
wish to permit events to be processed in the meantime.

	
include_idle

	If True, generate an idle event when no other events would be
generated by poll(). This attribute defaults to False.

	
poll_gap

	The length of time (in seconds) to pause during main_loop().

This property specifies the length of time to wait at the end of each
iteration of main_loop(). By default this is 0.1 seconds.

The purpose of the pause is to give event handlers executing in the
background time to communicate with the Minecraft server. Setting this
to 0.0 will result in faster response to events, but also starves
threaded event handlers of time to communicate with the server,
resulting in “choppy” performance.

	
track_players

	The set of player ids for which movement should be tracked.

By default the poll() method will not produce player position
events (PlayerPosEvent). Producing these events requires extra
interactions with the Minecraft server (one for each player tracked)
which slow down response to block hit events.

If you wish to track player positions, set this attribute to the set of
player ids you wish to track and their positions will be stored. The
next time poll() is called it will query the positions for all
specified players and fire player position events if they have changed.

Given that the players attribute
represents a dictionary mapping player ids to players, if you wish to
track all players you can simply do:

>>> world.events.track_players = world.players

12.2. BlockHitEvent

	
class picraft.events.BlockHitEvent(pos, face, player)

	Event representing a block being hit by a player.

This tuple derivative represents the event resulting from a player striking
a block with their sword in the Minecraft world. Users will not normally
need to construct instances of this class, rather they are constructed and
returned by calls to poll().

Note

Please note that the block hit event only registers when the player
right clicks with the sword. For some reason, left clicks do not
count.

	
pos

	A Vector indicating the position of the block
which was struck.

	
face

	A string indicating which side of the block was struck. This can be one
of six values: ‘x+’, ‘x-‘, ‘y+’, ‘y-‘, ‘z+’, or ‘z-‘. The value
indicates the axis, and direction along that axis, that the side faces:

[image: _images/block_faces.svg]

	
player

	A Player instance representing the player that
hit the block.

12.3. PlayerPosEvent

	
class picraft.events.PlayerPosEvent(old_pos, new_pos, player)

	Event representing a player moving.

This tuple derivative represents the event resulting from a player moving
within the Minecraft world. Users will not normally need to construct
instances of this class, rather they are constructed and returned by calls
to poll().

	
old_pos

	A Vector indicating the location of the player
prior to this event. The location includes decimal places (it is not
the tile-position, but the actual position).

	
new_pos

	A Vector indicating the location of the player
as of this event. The location includes decimal places (it is not
the tile-position, but the actual position).

	
player

	A Player instance representing the player that
moved.

12.4. ChatPostEvent

	
class picraft.events.ChatPostEvent(message, player)

	Event representing a chat post.

This tuple derivative represents the event resulting from a chat message
being posted in the Minecraft world. Users will not normally need to
construct instances of this class, rather they are constructed and returned
by calls to poll().

Note

Chat events are only generated by the Raspberry Juice server, not by
Minecraft Pi edition.

	
message

	The message that was posted to the world.

	
player

	A Player instance representing the player that
moved.

12.5. IdleEvent

	
class picraft.events.IdleEvent

	Event that fires in the event that no other events have occurred since the
last poll. This is only used if Events.include_idle is True.

13. API - Connections and Batches

The connection module defines the Connection class, which represents
the network connection to the Minecraft server. Its primary purpose for users
of the library is to initiate batch sending via the
Connection.batch_start() method.

Note

All items in this module are available from the picraft namespace
without having to import picraft.connection directly.

The following items are defined in the module:

13.1. Connection

	
class picraft.connection.Connection(host, port, timeout=1.0, ignore_errors=True, encoding=u'ascii')

	Represents the connection to the Minecraft server.

The host parameter specifies the hostname or IP address of the Minecraft
server, while port specifies the port to connect to (these typically take
the values “127.0.0.1” and 4711 respectively).

The timeout parameter specifies the maximum time in seconds that the
client will wait after sending a command before assuming that the command
has succeeded when ignore_errors is False (see the The Minecraft network protocol
section for more information). If ignore_errors is True (the
default), act like the mcpi implementation and ignore all errors for
commands which do not return data.

Users will rarely need to construct a Connection object
themselves. An instance of this class is constructed by
World to handle communication with the game server
(connection).

The most important aspect of this class is its ability to “batch”
transmissions together. Typically, the send() method is used to
transmit requests to the Minecraft server. When this is called normally
(outside of a batch), it immediately transmits the requested data. However,
if batch_start() has been called first, the data is not sent
immediately, but merely appended to the batch. The batch_send()
method can then be used to transmit all requests simultaneously (or
alternatively, batch_forget() can be used to discard the list). See
the docs of these methods for more information.

	
close()

	Closes the connection.

This method can be used to close down the connection to the game
server. After this method is called, any further requests will raise a
ConnectionClosed exception.

	
send(buf)

	Transmits the contents of buf to the connected server.

If no batch has been initiated (with batch_start()), this method
immediately communicates the contents of buf to the connected
Minecraft server. If buf is a unicode string, the method attempts
to encode the content in a byte-encoding prior to transmission (the
encoding used is the encoding attribute of the class which
defaults to “ascii”).

If a batch has been initiated, the contents of buf are appended to
the batch (batches cannot be nested; see batch_start() for more
information).

	
transact(buf)

	Transmits the contents of buf, and returns the reply string.

This method immediately communicates the contents of buf to the
connected server, then reads a line of data in reply and returns it.

Note

This method ignores the batch mechanism entirely as transmission
is required in order to obtain the response. As this method
is typically used to implement “getters”, this is not usually an
issue but it is worth bearing in mind.

	
batch_start()

	Starts a new batch transmission.

When called, this method starts a new batch transmission. All
subsequent calls to send() will append data to the batch buffer
instead of actually sending the data.

To terminate the batch transmission, call batch_send() or
batch_forget(). If a batch has already been started, a
BatchStarted exception is raised.

Note

This method can be used as a context manager (with [https://docs.python.org/3.4/reference/compound_stmts.html#with])
which will cause a batch to be started, and implicitly terminated
with batch_send() or batch_forget() depending on
whether an exception is raised within the enclosed block.

	
batch_send()

	Sends the batch transmission.

This method is called after batch_start() and send() have
been used to build up a list of batch commands. All the commands will
be combined and sent to the server as a single transmission.

If no batch is currently in progress, a
BatchNotStarted exception will be raised.

	
batch_forget()

	Terminates a batch transmission without sending anything.

This method is called after batch_start() and send()
have been used to build up a list of batch commands. All commands in
the batch will be cleared without sending anything to the server.

If no batch is currently in progress, a
BatchNotStarted exception will be raised.

	
ignore_errors

	If False, use the timeout to determine when responses have
been successful; this is safer but requires such long timeouts when
using remote connections that it’s not the default. If True (the
default) assume any response without an expected reply is successful
(this is the behaviour of the mcpi implementation; it is faster but
less “safe”).

	
timeout

	The length of time in seconds to wait for a response (positive or
negative) from the server when ignore_errors is False.
Defaults to 1 second.

	
encoding

	The encoding that will be used for messages transmitted to, and
received from the server. Defaults to 'ascii'.

	
server_version

	Returns an object (currently just a string) representing the version
of the Minecraft server we’re talking to. Presently this is just
'minecraft-pi' or 'raspberry-juice'.

14. API - Players

The player module defines the Players class, which is available via
the players attribute, the Player class,
which represents an arbitrary player in the world, and the HostPlayer
class which represents the player on the host machine (accessible via the
player attribute).

Note

All items in this module are available from the picraft namespace
without having to import picraft.player directly.

The following items are defined in the module:

14.1. Player

	
class picraft.player.Player(connection, player_id)

	Represents a player within the game world.

Players are uniquely identified by their player_id. Instances of this
class are available from the players mapping.
It provides properties to query and manipulate the position and settings of
the player.

	
direction

	The direction the player is facing as a unit vector.

This property can be queried to retrieve a unit
Vector pointing in the direction of the
player’s view.

Warning

Player direction is only fully supported on Raspberry Juice. On
Minecraft Pi, it can be emulated by activating tracking for the
player (see track_players) and
periodically calling poll(). However,
this will only tell you what direction the player moved in, not
necessarily what direction they’re facing.

	
heading

	The direction the player is facing in clockwise degrees from South.

This property can be queried to determine the direction that the player
is facing. The value is returned as a floating-point number of degrees
from North (i.e. 180 is North, 270 is East, 0 is South, and 90 is
West).

Warning

Player heading is only fully supported on Raspberry Juice. On
Minecraft Pi, it can be emulated by activating tracking for the
player (see track_players) and
periodically calling poll(). However,
this will only tell you what heading the player moved along, not
necessarily what direction they’re facing.

	
pitch

	The elevation of the player’s view in degrees from the horizontal.

This property can be queried to determine whether the player is looking
up (values from 0 to -90) or down (values from 0 down to 90). The value
is returned as floating-point number of degrees from the horizontal.

Warning

Player pitch is only supported on Raspberry Juice.

	
player_id

	Returns the integer ID of the player on the server.

	
pos

	The precise position of the player within the world.

This property returns the position of the selected player within the
Minecraft world, as a Vector instance. This is
the precise position of the player including decimal places
(representing portions of a tile). You can assign to this property to
reposition the player.

	
tile_pos

	The position of the player within the world to the nearest block.

This property returns the position of the selected player in the
Minecraft world to the nearest block, as a
Vector instance. You can assign to this
property to reposition the player.

14.2. HostPlayer

	
class picraft.player.HostPlayer(connection)

	Represents the host player within the game world.

An instance of this class is accessible as the Game.player
attribute. It provides properties to query and manipulate the position
and settings of the host player.

	
autojump

	Write-only property which sets whether the host player autojumps.

When this property is set to True (which is the default), the host
player will automatically jump onto blocks when it runs into them
(unless the blocks are too high to jump onto).

Warning

Player settings are only supported on Minecraft Pi edition.

Note

Unfortunately, the underlying protocol provides no means of reading
a world setting, so this property is write-only (attempting to
query it will result in an AttributeError [https://docs.python.org/3.4/library/exceptions.html#AttributeError] being raised).

	
direction

	The direction the player is facing as a unit vector.

This property can be queried to retrieve a unit
Vector pointing in the direction of the
player’s view.

Warning

Player direction is only fully supported on Raspberry Juice. On
Minecraft Pi, it can be emulated by activating tracking for the
player (see track_players) and
periodically calling poll(). However,
this will only tell you what direction the player moved in, not
necessarily what direction they’re facing.

	
heading

	The direction the player is facing in clockwise degrees from South.

This property can be queried to determine the direction that the player
is facing. The value is returned as a floating-point number of degrees
from North (i.e. 180 is North, 270 is East, 0 is South, and 90 is
West).

Warning

Player heading is only fully supported on Raspberry Juice. On
Minecraft Pi, it can be emulated by activating tracking for the
player (see track_players) and
periodically calling poll(). However,
this will only tell you what heading the player moved along, not
necessarily what direction they’re facing.

	
pitch

	The elevation of the player’s view in degrees from the horizontal.

This property can be queried to determine whether the player is looking
up (values from 0 to -90) or down (values from 0 down to 90). The value
is returned as floating-point number of degrees from the horizontal.

Warning

Player pitch is only supported on Raspberry Juice.

	
pos

	The precise position of the player within the world.

This property returns the position of the selected player within the
Minecraft world, as a Vector instance. This is
the precise position of the player including decimal places
(representing portions of a tile). You can assign to this property to
reposition the player.

	
tile_pos

	The position of the player within the world to the nearest block.

This property returns the position of the selected player in the
Minecraft world to the nearest block, as a
Vector instance. You can assign to this
property to reposition the player.

15. API - Rendering

The render module defines a series of classes for interpreting and rendering
models in the Wavefront object format [http://paulbourke.net/dataformats/obj/].

Note

All items in this module are available from the picraft namespace
without having to import picraft.render directly.

The following items are defined in the module:

15.1. Model

	
class picraft.render.Model(source, swap_yz=False)

	Represents a three-dimensional model parsed from an Alias|Wavefront object
file [https://en.wikipedia.org/wiki/Wavefront_.obj_file] (.obj extension). The constructor accepts a source parameter which
can be a filename or file-like object (in the latter case, this must be
opened in text mode such that it returns unicode strings rather than bytes
in Python 3).

The optional swap_yz parameter specifies whether the Y and Z coordinates
of each vertex in the model will be swapped; some models require this to
render correctly in Minecraft, some do not.

The faces attribute provides access to all object faces extracted
from the file’s content. The materials property enumerates all
material names used by the object. The groups mapping maps group
names to subsets of the available faces. The bounds attribute
provides a range describing the bounding box of the unscaled model.

Finally, the render() method can be used to easily render the object
in the Minecraft world at the specified scale, and with a given material
mapping.

	
render(scale=1.0, materials=None, groups=None)

	Renders the model as a dict [https://docs.python.org/3.4/library/stdtypes.html#dict] mapping vectors to block types.
Effectively this rounds the vertices of each face to integers (after
applying the scale multiplier, which defaults to 1.0), then calls
filled() and lines() to
obtain the complete coordinates of each face.

Each coordinate then needs to be mapped to a block type. By default
the material name is simply passed to the Block
constructor. This assumes that material names are valid Minecraft
block types (see NAMES).

You can override this mechanism with the materials parameter. This
can be set to a mapping (e.g. a dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) which maps material
names to Block instances. For example:

from picraft import Model, Block

m = Model('airboat.obj')
d = m.render(materials={
 'bluteal': Block('diamond_block'),
 'bronze': Block('gold_block'),
 'dkdkgrey': Block((64, 64, 64)),
 'dkteal': Block('#000080'),
 'red': Block('#ff0000'),
 'silver': Block.from_color('#ffffff'),
 'black': Block(id=35, data=15),
 None: Block('stone'),
 })

Note

Some object files may include faces with no associated material.
In this case you will need to map None to a block type, as in
the example above.

Alternatively, materials can be a callable which will be called with
the ModelFace being rendered, which should return a block
type. The following is equivalent to the default behaviour:

from picraft import Model, Block

m = Model('airboat.obj')
d = m.render(materials=lambda f: Block(f.material))

If you simply want to preview a shape without bothering with any
material mapping you can use this method to map any face to a single
material (in this case stone):

from picraft import Model, Block

m = Model('airboat.obj')
d = m.render(materials=lambda f: Block('stone'))

If the materials mapping or callable returns None instead of a
Block instance, the corresponding blocks will
not be included in the result. This is a simple mechanism for excluding
parts of a model. The other mechanism for achieving this is the
groups parameter which specifies which sub-components of the model
should be rendered. This can be specified as a string (indicating that
only that sub-component should be rendered) or as a sequence of strings
(indicating that all specified sub-components should be rendered).

The result is a mapping of Vector to
Block instances. Rendering the result in the
main world should be as trivial as the following code:

from picraft import World, Model

w = World()
m = Model('airboat.obj').render(scale=2.0)
with w.connection.batch_start():
 w.blocks[m.keys()] = m.values()

Of course, you may choose to further transform the result first. This
can be accomplished by modifying the vectors as you set them:

from picraft import World, Model, Y

w = World()
m = Model('airboat.obj').render(scale=2.0)
with w.connection.batch_start():
 for v, b in m.items():
 w.blocks[v + 10*Y] = b

Alternatively you may choose to use a dict-comprehension:

from picraft import Model, Vector

m = Model('airboat.obj').render(scale=2.0)
offset = Vector(y=10)
m = {v + offset: b for v, b in m.items()}

Note that the Alias|Wavefront object file [https://en.wikipedia.org/wiki/Wavefront_.obj_file] format is a relatively
simple text based format that can be constructed by hand without
too much difficulty. Combined with the default mapping of material
names to block types, this enables another means of constructing
objects in the Minecraft world. For example, see Models.

	
bounds

	Returns a vector range which completely encompasses the model at scale
1.0. This can be useful for determining scaling factors when rendering.

Note

The bounding box returned is axis-aligned [https://en.wikipedia.org/wiki/Minimum_bounding_box#Axis-aligned_minimum_bounding_box] and is not guaranteed
to be the minimal bounding box for the model.

	
faces

	Returns the sequence of faces that make up the model. Each instance of
this sequence is a ModelFace instance which provides details
of the coordinates of the face vertices, the face material, etc.

	
groups

	A mapping of group names to sequences of ModelFace instances.
This can be used to extract a component of the model for further
processing or rendering.

	
materials

	Returns the set of materials used by the model. This is derived from
the material assigned to each face of the model.

15.2. ModelFace

	
class picraft.render.ModelFace(vectors, material, groups)

	Represents a face belonging to a Model. A face consists of three
or more vectors which are all coplanar [https://en.wikipedia.org/wiki/Coplanarity] (belonging to the same
two-dimensional plane within the three-dimensional space).

A face also has a material. As Minecraft’s rendering is relatively
crude this is simply stored as the name of the material; it is up to the
user to map this to a meaningful block type. Finally each face belongs to
zero or more groups which can be used to distinguish components of
a model from each other.

	
groups

	The set of groups that the face belongs to. By default all faces belong
to a Model. However, in additionl to this a face can belong to
zero or more “groups” which are effectively components of the model.
This facility can be used to render particular parts of a model.

	
material

	The material assigned to the face. This is simply stored as the name of
the material as it would be ridiculous to even attempt to emulate the
material model of a full ray-tracer as Minecraft blocks.

The Model.render() method provides a simple means for mapping a
material name to a block type in Minecraft.

	
vectors

	The sequence of vectors that makes up the face. These are assumed to be
coplanar [https://en.wikipedia.org/wiki/Coplanarity] but this is not explicitly checked. Each point is
represented as a Vector instance.

16. API - Turtle

17. API - Exceptions

The exc module defines the various exception classes specific to picraft.

Note

All items in this module are available from the picraft namespace
without having to import picraft.exc directly.

The following items are defined in the module:

17.1. Exceptions

	
exception picraft.exc.Error

	Base class for all PiCraft exceptions

	
exception picraft.exc.NotSupported

	Exception raised for unimplemented methods / properties

	
exception picraft.exc.ConnectionError

	Base class for PiCraft errors relating to network communications

	
exception picraft.exc.ConnectionClosed

	Exception raised when an operation is attempted against a closed connection

	
exception picraft.exc.CommandError

	Exception raised when a network command fails

	
exception picraft.exc.NoResponse

	Exception raised when a network command expects a response but gets none

	
exception picraft.exc.BatchStarted

	Exception raised when a batch is started before a prior one is complete

	
exception picraft.exc.BatchNotStarted

	Exception raised when a batch is terminated when none has been started

17.2. Warnings

	
exception picraft.exc.EmptySliceWarning

	Warning raised when a zero-length vector slice is passed to blocks

	
exception picraft.exc.NoHandlersWarning

	Warning raised when a class with no handlers is registered with
has_handlers()

	
exception picraft.exc.ParseWarning

	Base class for warnings encountered during parsing

	
exception picraft.exc.UnsupportedCommand

	Warning raised when an unsupported statement is encountered

	
exception picraft.exc.NegativeWeight

	Warning raised when a negative weight is encountered

18. The Minecraft network protocol

This chapter contains details of the network protocol used by the library to
communicate with the Minecraft game. Although this is primarily intended to
inform future developers of this (or other) libraries, it may prove interesting
reading for users to understand some of the decisions in the design of the
library.

18.1. Specification

18.1.1. Requirements

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this section are to be
interpreted as defined in RFC 2119 [https://tools.ietf.org/html/rfc2119.html].

18.1.2. Overall Operation

The Minecraft protocol is a text-based “interactive” line oriented protocol.
All communication is initiated by the client and consists of single lines of
text which MAY generate a single line of text in response. Lines MUST terminate
with ASCII character 10 (line feed, usually shortened to LF or \n).

Protocol implementations MUST use the ASCII encoding (non-ASCII characters are
not ignored, or an error, but their effect is undefined).

A Minecraft network session begins by connecting a TCP stream socket to the
server, which defaults to listening on port 4711. Protocol implementations
SHOULD disable Nagle’s algorithm (TCP_NODELAY) on the socket as the protocol is
effectively interactive and relies on many small packets. No “hello” message is
transmitted by the client, and no “banner” message is sent by the server. A
Minecraft session ends simply by disconnecting the socket.

Commands and responses MUST consist of a single line. The typical form of a
command, described in the augmented Backus-Naur Form (ABNF) defined by
RFC 5234 [https://tools.ietf.org/html/rfc5234.html] is as follows:

command = command-name "(" [option *("," option)] ")" LF

command-name = 1*ALPHA "." 1*ALPHA ["." 1*ALPHA]
option = int-val / float-val / str-val

bool-val = "0" / "1"
int-val = 1*DIGIT
float-val = 1*DIGIT ["." 1*DIGIT]
str-val = *CHAR

Note

Note that the ABNF specified by RFC 5234 [https://tools.ietf.org/html/rfc5234.html] does not provide for implicit
specification of linear white space. In other words, unless whitespace is
explicitly specified in ABNF constructions, it is not permitted by the
specification.

The typical form of a response (if one is given) is as follows:

response = (success-response / fail-response) LF

success-response = int-vector / float-vector
fail-response = "Fail"

int-vector = int-val "," int-val "," int-val
float-vector = float-val "," float-val "," float-val

The general character classes utilised in the ABNF definitions above are as
follows:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
CHAR = %x01-09 / %x0B-FF ; any character except LF
SP = %x20 ; space
LF = %x0A ; line-feed

18.1.3. Client Notes

Successful commands either make no response, or provide a single line of data
as a response. Unsuccessful commands either make no response, or provide a
single line response containing the string “Fail” (without the quotation
marks). The lack of positive (and sometimes negative) acknowledgements provides
a conundrum for client implementations: how long to wait before deciding that a
command has succeeded? If “Fail” is returned, the client can immediately
conclude the preceding command failed. However, if nothing is returned, the
client must decide whether the command succeeded, or whether the network or
server is simply being slow in responding.

The longer the client waits, the more likely it is to correctly report failed
operations (in the case of slow systems). However, the longer the wait, the
slower the response time (and performance) of the client.

The mcpi implementation simply ignores errors in commands that produce no
response (providing the best performance, but the least safety). The picraft
implementation provides a configurable timeout but defaults to ignoring errors
like the mcpi implementation because remote connections tend to require such
long timeouts that the library’s performance becomes unacceptable.

Clients MAY either ignore errors or implement some form or timeout to determine
when operations are successful.

18.1.4. Specific Commands

The following sections define the specific commands supported by the protocol.

18.1.5. camera.mode.setFixed

Syntax:

camera-fixed-command = "camera.mode.setFixed()" LF

The camera.mode.setFixed command fixes the camera’s position at the current
location. The camera’s location can subsequently be updated with the
camera.setPos command but will not move otherwise. The camera’s orientation
is fixed facing down (parallel to a vector along Y=-1).

18.1.6. camera.mode.setFollow

Syntax:

camera-follow-command = "camera.mode.setFollow(" [int] ")" LF

The camera.mode.setFollow command fixes the camera’s position vertically
above the player with the specified ID (if the optional integer is specified)
or above the host player (if no integer is given). The camera’s position will
follow the specified player’s position, but the orientation will be fixed
facing down (parallel to a vector along Y=-1).

18.1.7. camera.mode.setNormal

Syntax:

camera-normal-command = "camera.mode.setNormal(" [int] ")" LF

The camera.mode.setNormal command aligns the camera’s position with the
“head” of the player with the specified ID (if the optional integer is
specified) or the host player (if no integer is given). The camera’s position
and orientation will subsequently track the player’s head.

18.1.8. camera.setPos

Syntax:

camera-set-pos-command = "camera.mode.setPos(" float-vector ")" LF

When the camera position has been fixed with camera.mode.setFixed(), this
command can be used to alter the position of the camera. The orientation of
the camera will, however, remain fixed (parallel to a vector along Y=-1).

18.1.9. chat.post

Syntax:

world-chat-command = "chat.post(" str-val ")" LF

The chat.post command causes the server to echo the message provided as
the only parameter to the in-game chat console. The message MUST NOT contain
the LF character, but other control characters are (currently) permitted.

18.1.10. entity.getPos

Syntax:

entity-get-pos-command = "entity.getPos(" int-val ")" LF
entity-get-pos-response = player-get-pos-response

The entity.getPos command performs the same action as the
player.getPos command for the player with the ID given by the
sole parameter; refer to player.getPos for full details.

18.1.11. entity.getTile

Syntax:

entity-get-tile-command = "entity.getTile(" int-val ")" LF
entity-get-tile-command = player-get-tile-response

The entity.getTile command performs the same action as the
player.getTile command for the player with the ID given by the
sole parameter; refer to player.getTile for full details.

18.1.12. entity.setPos

Syntax:

entity-set-pos-command = "entity.setPos(" int-val "," float-vector ")" LF

The entity.setPos command performs the same action as the
player.setPos command for the player with the ID given by the
first parameter. The second parameter is equivalent to the first parameter
for player.setPos; refer to that command for full details.

18.1.13. entity.setTile

Syntax:

entity-set-tile-command = "entity.setTile(" int-val "," int-vector ")" LF

The entity.setTile command performs the same action as the
player.setTile command for the player with the ID given by the first
parameter. The second parameter is equivalent to the first parameter for
player.setTile; refer to that command for full details.

18.1.14. player.getPos

Syntax:

player-get-pos-command = "player.getPos()" LF
player-get-pos-response = float-vector LF

The player.getPos command returns the current location of the host player
in the game world as an X, Y, Z vector of floating point values. The
coordinates 0, 0, 0 represent the spawn point within the world.

18.1.15. player.getTile

Syntax:

player-get-tile-command = "player.getTile()" LF
player-get-tile-response = int-vector LF

The player.getTile command returns the current location of the host player
in the game world, to the nearest block coordinates, as an X, Y, Z vector of
integer values.

18.1.16. player.setPos

Syntax:

player-set-pos-command = "player.setPos(" float-vector ")" LF

The player.setPos command teleports the host player to the specified
location in the game world. The floating point values given are the X, Y, and Z
coordinates of the player’s new position respectively.

18.1.17. player.setTile

Syntax:

player-set-tile-command = "player.setTile(" int-vector ")" LF

The player.setTile command teleports the host player to the specified
location in the game world. The integer values given are the X, Y, and Z
coordinates of the player’s new position respectively.

18.1.18. player.setting

Syntax:

player-setting-command = "player.setting(" str-val "," bool-val ")" LF

The player.setting command alters a property of the host player. The
property to alter is given as the str-val (note: this is unquoted) and the
new value is given as the bool-val (where 0 means “off” and 1 means “on”).
Valid properties are:

	autojump - when enabled, causes the player to automatically jump onto
blocks that they run into.

18.1.19. world.checkpoint.restore

Syntax:

world-restore-command = "world.checkpoint.restore()" LF

The world.checkpoint.restore command restores the state of the world (i.e.
the id and data of all blocks in the world) from a prior saved state (created
by the world.checkpoint.save command). If no prior state exists, nothing
is restored but no error is reported. Restoring a state does not wipe it; thus
a saved state can be restored multiple times.

18.1.20. world.checkpoint.save

Syntax:

world-save-command = "world.checkpoint.save()" LF

The world.checkpoint.save command can be used to save the current state
of the world (i.e. the id and data of all blocks in the world, but not the
position or orientation of player entities). Only one state is stored at any
given time; any save overwrites any existing state.

The state of the world can be restored with a subsequent
world.checkpoint.restore command.

18.1.21. world.getBlock

Syntax:

world-get-block-command = "world.getBlock(" int-vector ")" LF
world-get-block-response = int-val LF

The world.getBlock command can be used to retrieve the current type of a
block within the world. The result consists of an integer representing the
block type.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for a list of block types.

18.1.22. world.getBlocks

Syntax:

world-get-blocks-command = "world.getBlocks(" int-vector "," int-vector ")" LF
world-get-blocks-response = int-val *("," int-val) LF

The world.getBlocks command is a Raspberry Juice extension which retrieves
the block ids of an entire range of blocks in a single network transaction. The
result consists of a list of comma-separated integers representing the ids
(but not the data) of all blocks within the cuboid defined by the two vectors
inclusively. The ordering of vectors within the range is by z, then x, then y.

18.1.23. world.getBlockWithData

Syntax:

world-get-blockdata-command = "world.getBlockWithData(" int-vector ")" LF
world-get-blockdata-response = int-val "," int-val LF

The world.getBlockWithData command can be used to retrieve the current type
and associated data of a block within the world. The result consists of two
comma-separated integers which represent the block type and the associated data
respectively.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for further information.

18.1.24. world.getHeight

Syntax:

world-get-height-command = "world.getHeight(" int-val "," int-val ")" LF
world-get-height-response = int-val LF

In response to the world.getHeight command the server calculates the Y
coordinate of the first non-air block for the given X and Z coordinates (first
and second parameter respectively) from the top of the world, and returns this
as the result.

18.1.25. world.getPlayerIds

Syntax:

world-enum-players-command = "world.getPlayerIds()" LF
world-enum-players-response = [int-val *("|" int-val) LF]

The world.getPlayerIds command causes the server to a return a pipe (|)
separated list of the integer player IDs of all players currently connected
to the server. These player IDs can subsequently be used in the commands
qualified with entity.

18.1.26. world.setBlock

Syntax:

world-set-block-command = "world.setBlock(" int-vector "," int-val ["," int-val] ")" LF

The world.setBlock command can be used to alter the type and associated
data of a block within the world. The first three integer values provide the X,
Y, and Z coordinates of the block to alter. The fourth integer value provides
the new type of the block. The optional fifth integer value provides the
associated data of the block.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for further information.

18.1.27. world.setBlocks

Syntax:

world-set-blocks-command = "world.setBlock(" int-vector "," int-vector "," int-val ["," int-val] ")" LF

The world.setBlocks command can be used to alter the type and associated
data of a range of blocks within the world. The first three integer values
provide the X, Y, and Z coordinates of the start of the range to alter. The
next three integer values provide the X, Y, and Z coordinates of the end of the
range to alter.

The seventh integer value provides the new type of the block. The optional
eighth integer value provides the associated data of the block.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for further information.

18.1.28. world.setting

Syntax:

world-setting-command = "world.setting(" str-val "," bool-val ")" LF

The world.setting command is used to alter global aspects of the world.
The setting to be altered is named by the first parameter (the setting name
MUST NOT be surrounded by quotation marks), while the boolean value (the only
type currently supported) is specified as the second parameter. The settings
supported by the Minecraft Pi engine are:

	world_immutable - This controls whether or the player can alter the world
(by placing or destroying blocks)

	nametags_visible - This controls whether the nametags of other players
are visible

18.2. Critique

The Minecraft protocol is a text-based “interactive” line oriented protocol.
By this, I mean that a single connection is opened from the client to the
server and all commands and responses are transmitted over this connection. The
completion of a command does not close the connection.

Despite text protocols being relatively inefficient compared to binary
(non-human readable) protocols, a text-based protocol is an excellent choice in
this case: the protocol isn’t performance critical and besides, this makes it
extremely easy to experiment with and debug using nothing more than a standard
telnet client.

Unfortunately, this is where the good news ends. The following is a telnet
session in which I experimented with various possibilities to see how “liberal”
the server was in interpreting commands:

chat.post(foo)
Chat.post(foo)
chat.Post(foo)
chat.post (foo)
chat.post(foo))
chat.post(foo,bar)
chat.post(foo) bar baz
chat.post foo
Fail

	The first attempt (chat.post(foo)) succeeds and prints “foo” in the chat
console within the game.

	The second, third and fourth attempts (Chat.post(foo),
chat.Post(foo), and chat.post (foo)) all fail silently.

	The fifth attempt (chat.post(foo))) succeeds and prints “foo)” in the
chat console within the game (this immediately raised my suspicions that the
server is simply using regex matching instead of a proper parser).

	The sixth attempt (chat.post(foo,bar)) succeeds, and prints “foo,bar” in
the chat console.

	The seventh attempt (chat.post(foo) bar baz) succeeds, and prints “foo”
in the console.

	The eighth and final attempt (chat.post foo) also fails and actually
elicits a “Fail” response from the server.

What can we conclude from the above? If one were being generous, we might
conclude that the ignoring of trailing junk (bar baz in the final example)
is an effort at conforming with Postel’s Law [https://en.wikipedia.org/wiki/Robustness_principle]. However, the fact that command
name matching is done case insensitively, and that spaces leading the
parenthesized arguments cause failure would indicate it’s more likely an
oversight in the (probably rather crude) command parser.

A more serious issue is that in certain cases positive acknowledgement, and
even negative acknowledgement, are lacking from the protocol. This is a major
oversight as it means a client has no reliable means of deciding when a command
has succeeded or failed:

	If the client receives “Fail” in response to a command, it can immediately
conclude the command has failed (and presumably raise some sort of exception
in response).

	If nothing is received, the command may have succeeded.

	Alternatively, if nothing is received, the command may have failed (see
the silent failures above).

	Finally, if nothing is received, the server or intervening network may simply
be running slowly and the client should wait a bit longer for a response.

So, after sending a command a client needs to wait a certain period of time
before deciding that a command has succeeded or failed. How long? This is
impossible to decide given that it depends on the state of the remote system
and intervening network.

The longer a client waits, the more likely it is to correctly notice failures
in the event of slow systems/networks. However, the longer a client waits the
longer it will be before another command can be sent (given that responses are
not tied to commands by something like a sequence number), resulting in poorer
performance.

The mcpi implementation of the client doesn’t wait at all and simply assumes
that all commands which don’t normally provide a response succeed. The picraft
implementation provides a configurable timeout, or the option to ignore errors
like the mcpi implementation. It defaults to acting in the same manner as the
mcpi implementation partly for consistency and partly because such long
timeouts are required with remote servers that the library’s performance
becomes unacceptable.

What happens with unknown commands? Let’s try another telnet session to find
out:

foo
Fail
foo()

It appears that anything without parentheses is rejected as invalid, but
anything with parentheses is accepted (even though it does nothing … is that
an error? I’ve no idea!).

What happens when we play with commands which accept numbers?

player.setPos(0.5,60,-60)
player.setPos(0.5,60.999999999999999999999999999999999999,-60)
player.setPos(0.5,0x3c,-60)
player.setPos(5e-1,60,-60)
player.setPos(0.5,inf,-60)
player.setPos(0.5,NaN,nan)
player.setPos(0.5,+60,-60)
player.setPos(0.5,--60,-60)
Fail
player.setPos(0.5,60,-60)
player.setPos(0.5 ,60,-60)
Fail
player.setPos(0.5,60,-60
player.setPos(0.5,60,-60 foo
player.setPos(0.5 foo,60,-60)
Fail

In each case above, if nothing was returned, the command succeeded (albeit with
interesting results in the case of NaN and inf values). So, we can conclude
the following:

	The server doesn’t seem to care if we use floating point literals, decimal
integer literals, hex literals, exponent format, or silly amounts of
decimals. This suggests to me it’s just splitting the options on “,” and
throwing each resulting string at some generic str2num routine.

	Backing up the assumption that some generic str2num routine is being used,
the server also accepts “NaN” and “inf” values as numbers (albeit with
silly results).

	Leading spaces in options are fine, but trailing ones result in failure.

	Unless it’s the last option in which case anything goes.

	Including the trailing parenthesis, apparently.

As we’ve seen above, the error reporting provided by the protocol is beyond
minimal. The most we ever get is the message “Fail” which doesn’t tell us
whether it’s a client side or server side error, a syntax error, an unknown
command, or anything else. In several cases, we don’t even get “Fail” despite
nothing occurring on the server.

In conclusion, this is not a well thought out protocol, nor a terribly well
implemented server.

18.2.1. A plea to the developers

I would dearly like to see this situation improved and be able to remove this
section from the docs! To that end, I would be more than happy to discuss
(backwards compatible) improvements in the protocol with the developers. It
shouldn’t be terribly hard to come up with something similarly structured
(text-based, line-oriented), which doesn’t break existing clients, but permits
future clients to operate more reliably without sacrificing (much) performance.

19. Change log

19.1. Release 1.0 (2016-12-12)

The major news in 1.0 is that the API is now considered stable (so I won’t make
backwards incompatible changes from here on without lots of warning,
deprecation, etc.)

The new features in 1.0 are:

	The new turtle module implements a classic logo-like turtle
in the Minecraft world

	A rudimentary direction attribute is now
available in Minecraft Pi (#20 [https://github.com/waveform80/picraft/issues/20])

The docs have also undergone some re-organization and expansion to make them
a bit more friendly.

19.2. Release 0.6 (2016-01-21)

Release 0.6 adds some new features:

	A new sphere() generator function was added (#13 [https://github.com/waveform80/picraft/issues/13])

	The blocks attribute was updated to permit
arbitrary sequences of vectors to be queried and assigned

	Event decorators can now be used in classes with the new
has_handlers() decorator (#14 [https://github.com/waveform80/picraft/issues/14])

	Installation instructions have been simplified, along with several recipes
and code examples throughout the docs (#15 [https://github.com/waveform80/picraft/issues/15], #16 [https://github.com/waveform80/picraft/issues/16])

	When used with a Raspberry Juice server, chat events can now be monitored and
reacted to using event decorators (#19 [https://github.com/waveform80/picraft/issues/19]); many thanks to GitHub user
wh11e7rue for not just suggesting the idea but providing a fantastically
complete pull-request implementing it!

And fixes some bugs:

	The default for ignore_errors was changed so that picraft’s network
behaviour now matches mcpi’s by default (#18 [https://github.com/waveform80/picraft/issues/18])

	A silly bug in circle() prevented the center
parameter from working correctly

19.3. Release 0.5 (2015-09-10)

Release 0.5 adds ever more new features:

	The major news is the new obj loader and renderer in the
Model class. This includes lots of good stuff like
bounds calculation, scaling, material mapping by map or by callable,
sub-component querying by group, etc. It’s also tolerably quick (#10 [https://github.com/waveform80/picraft/issues/10])

	As part of this work a new function was added to calculate the coordinates
necessary to fill a polygon. This is the new filled()
function (#12 [https://github.com/waveform80/picraft/issues/12])

	Lots more doc revisions, including new and fixed recipes, lots more
screenshots, and extensions to the chapter documenting vectors.

19.4. Release 0.4 (2015-07-19)

Release 0.4 adds plenty of new features:

	The events system has been expanded considerably to include an event-driven
programming paradigm (decorate functions to tell picraft when to call them,
e.g. in response to player movement or block hits). This includes the ability
to run event handlers in parallel with automatic threading

	Add support for circle drawing through an arbitrary plane. I’m still not
happy with the implementation, and may revise it in future editions, but
I am happy with the API so it’s worth releasing for now (#7 [https://github.com/waveform80/picraft/issues/7])

	Add Raspbian packaging; we’ve probably got to the point where I need to start
making guarantees about backward compatibililty in which case it’s probably
time to make this more generally accessible by including deb packaging
(#8 [https://github.com/waveform80/picraft/issues/8])

	Lots of doc revisions including a new vectors chapter, more recipes, and so
on!

19.5. Release 0.3 (2015-06-21)

Release 0.3 adds several new features:

	Add support for querying a range of blocks with one transaction on the
Raspberry Juice server (#1 [https://github.com/waveform80/picraft/issues/1])

	Add support for rotation of vectors about an arbitrary line (#6 [https://github.com/waveform80/picraft/issues/6])

	Add bitwise operations and rounding of vectors

	Lots of documentation updates (fixes to links, new recipes, events documented
properly, etc.)

19.6. Release 0.2 (2015-06-08)

Release 0.2 is largely a quick bug fix release to deal with a particularly
stupid bug in 0.1 (but what are alphas for?). It also adds a couple of minor
features:

	Fix a stupid error which caused block.data and block.color (which
make up the block database) to be excluded from the PyPI build (#3 [https://github.com/waveform80/picraft/issues/3])

	Fix being able to set empty block ranges (#2 [https://github.com/waveform80/picraft/issues/2])

	Fix being able to set block ranges with non-unit steps (#4 [https://github.com/waveform80/picraft/issues/4])

	Preliminary implementation of getBlocks support (#1 [https://github.com/waveform80/picraft/issues/1])

19.7. Release 0.1 (2015-06-07)

Initial release. This is an alpha version of the library and the API is subject
to change up until the 1.0 release at which point API stability will be
enforced.

20. License

Copyright 2013-2015 Dave Jones

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 picraft	

 	
 	
 picraft.block	

 	
 	
 picraft.connection	

 	
 	
 picraft.events	

 	
 	
 picraft.exc	

 	
 	
 picraft.player	

 	
 	
 picraft.render	

 	
 	
 picraft.turtle	

 	
 	
 picraft.vector	

 	
 	
 picraft.world	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	angle_between() (picraft.vector.Vector method)

 	
 	autojump (picraft.player.HostPlayer attribute)

B

 	
 	back() (in module picraft.turtle)

 	backward() (in module picraft.turtle)

 	batch_forget() (picraft.connection.Connection method)

 	batch_send() (picraft.connection.Connection method)

 	batch_start() (picraft.connection.Connection method)

 	BatchNotStarted

 	
 	BatchStarted

 	begin_fill() (in module picraft.turtle)

 	bk() (in module picraft.turtle)

 	Block (class in picraft.block)

 	BlockHitEvent (class in picraft.events)

 	blocks (picraft.world.World attribute)

 	bounds (picraft.render.Model attribute)

C

 	
 	Camera (class in picraft.world)

 	camera (picraft.world.World attribute)

 	ceil() (picraft.vector.Vector method)

 	ChatPostEvent (class in picraft.events)

 	Checkpoint (class in picraft.world)

 	checkpoint (picraft.world.World attribute)

 	circle() (in module picraft.vector)

 	clear() (in module picraft.turtle)

 	(picraft.events.Events method)

 	
 	close() (picraft.connection.Connection method)

 	COLORS (picraft.block.Block attribute)

 	CommandError

 	Connection (class in picraft.connection)

 	connection (picraft.world.World attribute)

 	ConnectionClosed

 	ConnectionError

 	count() (picraft.vector.vector_range method)

 	cross() (picraft.vector.Vector method)

D

 	
 	data (picraft.block.Block attribute)

 	description (picraft.block.Block attribute)

 	direction (picraft.player.HostPlayer attribute)

 	(picraft.player.Player attribute)

 	
 	distance() (in module picraft.turtle)

 	distance_to() (picraft.vector.Vector method)

 	dn() (in module picraft.turtle)

 	dot() (picraft.vector.Vector method)

 	down() (in module picraft.turtle)

E

 	
 	elevation() (in module picraft.turtle)

 	EmptySliceWarning

 	encoding (picraft.connection.Connection attribute)

 	
 	end_fill() (in module picraft.turtle)

 	Error

 	Events (class in picraft.events)

 	events (picraft.world.World attribute)

F

 	
 	face (picraft.events.BlockHitEvent attribute)

 	faces (picraft.render.Model attribute)

 	fd() (in module picraft.turtle)

 	fill() (in module picraft.turtle)

 	fillblock() (in module picraft.turtle)

 	filled() (in module picraft.vector)

 	
 	first_person() (picraft.world.Camera method)

 	floor() (picraft.vector.Vector method)

 	forward() (in module picraft.turtle)

 	from_color() (picraft.block.Block class method)

 	from_id() (picraft.block.Block class method)

 	from_name() (picraft.block.Block class method)

G

 	
 	getpen() (in module picraft.turtle)

 	getscreen() (in module picraft.turtle)

 	getturtle() (in module picraft.turtle)

 	
 	goto() (in module picraft.turtle)

 	groups (picraft.render.Model attribute)

 	(picraft.render.ModelFace attribute)

H

 	
 	has_handlers() (picraft.events.Events method)

 	heading (picraft.player.HostPlayer attribute)

 	(picraft.player.Player attribute)

 	heading() (in module picraft.turtle)

 	
 	height (picraft.world.World attribute)

 	hideturtle() (in module picraft.turtle)

 	home() (in module picraft.turtle)

 	HostPlayer (class in picraft.player)

 	ht() (in module picraft.turtle)

I

 	
 	id (picraft.block.Block attribute)

 	IdleEvent (class in picraft.events)

 	ignore_errors (picraft.connection.Connection attribute)

 	immutable (picraft.world.World attribute)

 	
 	include_idle (picraft.events.Events attribute)

 	index() (picraft.vector.vector_range method)

 	isdown() (in module picraft.turtle)

 	isvisible() (in module picraft.turtle)

L

 	
 	left() (in module picraft.turtle)

 	line() (in module picraft.vector)

 	
 	lines() (in module picraft.vector)

 	lt() (in module picraft.turtle)

M

 	
 	magnitude (picraft.vector.Vector attribute)

 	main_loop() (picraft.events.Events method)

 	material (picraft.render.ModelFace attribute)

 	
 	materials (picraft.render.Model attribute)

 	message (picraft.events.ChatPostEvent attribute)

 	Model (class in picraft.render)

 	ModelFace (class in picraft.render)

N

 	
 	name (picraft.block.Block attribute)

 	NAMES (picraft.block.Block attribute)

 	nametags_visible (picraft.world.World attribute)

 	NegativeWeight

 	
 	new_pos (picraft.events.PlayerPosEvent attribute)

 	NoHandlersWarning

 	NoResponse

 	NotSupported

O

 	
 	old_pos (picraft.events.PlayerPosEvent attribute)

 	on_block_hit() (picraft.events.Events method)

 	
 	on_chat_post() (picraft.events.Events method)

 	on_idle() (picraft.events.Events method)

 	on_player_pos() (picraft.events.Events method)

P

 	
 	ParseWarning

 	pd() (in module picraft.turtle)

 	penblock() (in module picraft.turtle)

 	pendown() (in module picraft.turtle)

 	penup() (in module picraft.turtle)

 	pi (picraft.block.Block attribute)

 	picraft (module)

 	picraft.block (module)

 	picraft.connection (module)

 	picraft.events (module)

 	picraft.exc (module)

 	picraft.player (module)

 	picraft.render (module)

 	picraft.turtle (module), [1]

 	picraft.vector (module)

 	picraft.world (module)

 	pitch (picraft.player.HostPlayer attribute)

 	(picraft.player.Player attribute)

 	Player (class in picraft.player)

 	
 	player (picraft.events.BlockHitEvent attribute)

 	(picraft.events.ChatPostEvent attribute)

 	(picraft.events.PlayerPosEvent attribute)

 	(picraft.world.World attribute)

 	player_id (picraft.player.Player attribute)

 	PlayerPosEvent (class in picraft.events)

 	players (picraft.world.World attribute)

 	pocket (picraft.block.Block attribute)

 	poll() (picraft.events.Events method)

 	poll_gap (picraft.events.Events attribute)

 	pos (picraft.events.BlockHitEvent attribute)

 	(picraft.player.HostPlayer attribute)

 	(picraft.player.Player attribute)

 	(picraft.world.Camera attribute)

 	pos() (in module picraft.turtle)

 	position() (in module picraft.turtle)

 	process() (picraft.events.Events method)

 	project() (picraft.vector.Vector method)

 	pu() (in module picraft.turtle)

R

 	
 	render() (picraft.render.Model method)

 	replace() (picraft.vector.Vector method)

 	reset() (in module picraft.turtle)

 	restore() (picraft.world.Checkpoint method)

 	
 RFC

 	RFC 2119

 	RFC 5234, [1]

 	
 	right() (in module picraft.turtle)

 	rotate() (picraft.vector.Vector method)

 	rt() (in module picraft.turtle)

S

 	
 	save() (picraft.world.Checkpoint method)

 	say() (picraft.world.World method)

 	send() (picraft.connection.Connection method)

 	server_version (picraft.connection.Connection attribute)

 	sete() (in module picraft.turtle)

 	setelevation() (in module picraft.turtle)

 	seth() (in module picraft.turtle)

 	setheading() (in module picraft.turtle)

 	
 	setpos() (in module picraft.turtle)

 	setposition() (in module picraft.turtle)

 	setx() (in module picraft.turtle)

 	sety() (in module picraft.turtle)

 	setz() (in module picraft.turtle)

 	showturtle() (in module picraft.turtle)

 	sphere() (in module picraft.vector)

 	st() (in module picraft.turtle)

T

 	
 	third_person() (picraft.world.Camera method)

 	tile_pos (picraft.player.HostPlayer attribute)

 	(picraft.player.Player attribute)

 	
 	timeout (picraft.connection.Connection attribute)

 	towards() (in module picraft.turtle)

 	track_players (picraft.events.Events attribute)

 	transact() (picraft.connection.Connection method)

U

 	
 	undo() (in module picraft.turtle)

 	undobufferentries() (in module picraft.turtle)

 	
 	unit (picraft.vector.Vector attribute)

 	UnsupportedCommand

 	up() (in module picraft.turtle)

V

 	
 	Vector (class in picraft.vector)

 	
 	vector_range (class in picraft.vector)

 	vectors (picraft.render.ModelFace attribute)

W

 	
 	World (class in picraft.world)

X

 	
 	x (picraft.vector.Vector attribute)

 	
 	xcor() (in module picraft.turtle)

Y

 	
 	y (picraft.vector.Vector attribute)

 	
 	ycor() (in module picraft.turtle)

Z

 	
 	z (picraft.vector.Vector attribute)

 	
 	zcor() (in module picraft.turtle)

 _images/vector9.png

_static/ajax-loader.gif

_images/vector7.png
X.rotate(180, about=X+Y)

_images/vector8.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 picraft

 		
 Installation

 		
 Raspbian installation

 		
 Ubuntu installation

 		
 Windows installation

 		
 Quick Start

 		
 Recipes

 		
 Player Position

 		
 Changing the World

 		
 Auto Bridge

 		
 Events

 		
 Shapes

 		
 Models

 		
 Animation

 		
 Minecraft TV

 		
 Turtle Graphics

 		
 Overview of available Turtle and TurtleScreen methods

 		
 Turtle methods

 		
 Methods of Turtle and corresponding functions

 		
 Turtle motion

 		
 Tell Turtle’s state

 		
 Pen control

 		
 Drawing state

 		
 Block control

 		
 Filling

 		
 More drawing control

 		
 Turtle state

 		
 Visibility

 		
 Special Turtle methods

 		
 Vectors

 		
 Orientation

 		
 Vector-vector operations

 		
 Vector-scalar operations

 		
 Miscellaneous function support

 		
 Vector rounding

 		
 Short-cuts

 		
 Rotation

 		
 Magnitudes

 		
 Dot and cross products

 		
 Projection

 		
 Immutability

 		
 Conversion from mcpi

 		
 Minecraft.create

 		
 Minecraft.getBlock

 		
 Minecraft.getBlocks

 		
 Minecraft.getBlockWithData

 		
 Minecraft.setBlock

 		
 Minecraft.setBlocks

 		
 Minecraft.getHeight

 		
 Minecraft.getPlayerEntityIds

 		
 Minecraft.saveCheckpoint

 		
 Minecraft.restoreCheckpoint

 		
 Minecraft.postToChat

 		
 Minecraft.setting

 		
 Minecraft.player.getPos

 		
 Minecraft.player.setPos

 		
 Minecraft.player.getTilePos

 		
 Minecraft.player.setTilePos

 		
 Minecraft.player.setting

 		
 Minecraft.player.getRotation

 		
 Minecraft.player.getPitch

 		
 Minecraft.player.getDirection

 		
 Minecraft.entity.getPos

 		
 Minecraft.entity.setPos

 		
 Minecraft.entity.getTilePos

 		
 Minecraft.entity.setTilePos

 		
 Minecraft.entity.getRotation

 		
 Minecraft.entity.getPitch

 		
 Minecraft.entity.getDirection

 		
 Minecraft.camera.setNormal

 		
 Minecraft.camera.setFollow

 		
 Minecraft.camera.setFixed

 		
 Minecraft.camera.setPos

 		
 Minecraft.block.Block

 		
 Frequently Asked Questions

 		
 Why?

 		
 API Reference

 		
 API - The World class

 		
 World

 		
 Checkpoint

 		
 Camera

 		
 API - The Block class

 		
 Block

 		
 Compatibility

 		
 API - Vector, vector_range, etc.

 		
 Vector

 		
 Short-hand variants

 		
 vector_range

 		
 line

 		
 lines

 		
 circle

 		
 sphere

 		
 filled

 		
 API - Events

 		
 Events

 		
 BlockHitEvent

 		
 PlayerPosEvent

 		
 ChatPostEvent

 		
 IdleEvent

 		
 API - Connections and Batches

 		
 Connection

 		
 API - Players

 		
 Player

 		
 HostPlayer

 		
 API - Rendering

 		
 Model

 		
 ModelFace

 		
 API - Turtle

 		
 API - Exceptions

 		
 Exceptions

 		
 Warnings

 		
 The Minecraft network protocol

 		
 Specification

 		
 Requirements

 		
 Overall Operation

 		
 Client Notes

 		
 Specific Commands

 		
 camera.mode.setFixed

 		
 camera.mode.setFollow

 		
 camera.mode.setNormal

 		
 camera.setPos

 		
 chat.post

 		
 entity.getPos

 		
 entity.getTile

 		
 entity.setPos

 		
 entity.setTile

 		
 player.getPos

 		
 player.getTile

 		
 player.setPos

 		
 player.setTile

 		
 player.setting

 		
 world.checkpoint.restore

 		
 world.checkpoint.save

 		
 world.getBlock

 		
 world.getBlocks

 		
 world.getBlockWithData

 		
 world.getHeight

 		
 world.getPlayerIds

 		
 world.setBlock

 		
 world.setBlocks

 		
 world.setting

 		
 Critique

 		
 A plea to the developers

 		
 Change log

 		
 Release 1.0 (2016-12-12)

 		
 Release 0.6 (2016-01-21)

 		
 Release 0.5 (2015-09-10)

 		
 Release 0.4 (2015-07-19)

 		
 Release 0.3 (2015-06-21)

 		
 Release 0.2 (2015-06-08)

 		
 Release 0.1 (2015-06-07)

 		
 License

_static/file.png

_static/logo.png

_images/airboat.png

_static/up-pressed.png

_static/up.png

_images/dont_look_down.png

_images/house.png
- Piedition

|mm Minecraft

Pos 428,78, 965

_images/blocks.png
Pos: 1897, 56, -275

_images/bridge.png

_images/quick1.png

_images/quick2.png

_images/quick3.png

_images/rain.png

_images/regions1.png

_images/quick4.png

_images/quick5.png

_images/turtle2.png

_images/turtle3.png

_images/shapes.png
Winecrafit- Pi edition

posi 6,00, 80

_images/turtle1.png
os: 63, 05, 10

_images/vector1.png

_images/vector10.png
p.magnitude =

_images/tv.png

_images/vector2.png

_images/vector3.png

_images/vector11.png

_images/vector12.png

_images/vector6.png
2(180, about=Y)

.rotate(90, about=X)

_images/vector4.png

_images/vector5.png

