

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Picraft 0.4 documentation

picraft

This package provides an alternate Python API for Minecraft Pi edition [https://www.raspberrypi.org/documentation/usage/minecraft/README.md] on
the Raspberry Pi [http://www.raspberrypi.org/], or Raspberry Juice [http://www.stuffaboutcode.com/2014/10/minecraft-raspberryjuice-and-canarymod.html] on the PC for Python 2.7 (or above),
or Python 3.2 (or above).

Links

	The code is licensed under the BSD license [http://opensource.org/licenses/BSD-3-Clause]

	The source code [https://github.com/waveform80/picraft] can be obtained from GitHub, which also hosts the bug
tracker [https://github.com/waveform80/picraft/issues]

	The documentation [http://picraft.readthedocs.org/] (which includes installation, quick-start examples, and
lots of code recipes) can be read on ReadTheDocs

	Packages can be downloaded from PyPI [http://pypi.python.org/pypi/picraft/], but reading the installation
instructions is more likely to be useful

Table of Contents

	1. Python 2.7+ Installation
	1.1. Raspbian installation

	1.2. User installation

	1.3. System installation

	1.4. Virtualenv installation

	1.5. Development installation

	1.6. Test suite

	2. Python 3.2+ Installation
	2.1. Raspbian installation

	2.2. User installation

	2.3. System installation

	2.4. Virtualenv installation

	2.5. Development installation

	2.6. Test suite

	3. Quick Start

	4. Conversion from mcpi
	4.1. Minecraft.create

	4.2. Minecraft.getBlock

	4.3. Minecraft.getBlockWithData

	4.4. Minecraft.setBlock

	4.5. Minecraft.setBlocks

	4.6. Minecraft.getHeight

	4.7. Minecraft.getPlayerEntityIds

	4.8. Minecraft.saveCheckpoint

	4.9. Minecraft.restoreCheckpoint

	4.10. Minecraft.postToChat

	4.11. Minecraft.setting

	4.12. Minecraft.player.getPos

	4.13. Minecraft.player.setPos

	4.14. Minecraft.player.getTilePos

	4.15. Minecraft.player.setTilePos

	4.16. Minecraft.player.setting

	4.17. Minecraft.player.getRotation

	4.18. Minecraft.player.getPitch

	4.19. Minecraft.player.getDirection

	4.20. Minecraft.entity.getPos

	4.21. Minecraft.entity.setPos

	4.22. Minecraft.entity.getTilePos

	4.23. Minecraft.entity.setTilePos

	4.24. Minecraft.entity.getRotation

	4.25. Minecraft.entity.getPitch

	4.26. Minecraft.entity.getDirection

	4.27. Minecraft.camera.setNormal

	4.28. Minecraft.camera.setFollow

	4.29. Minecraft.camera.setFixed

	4.30. Minecraft.camera.setPos

	4.31. Minecraft.block.Block

	5. Vectors
	5.1. Vector-vector operations

	5.2. Vector-scalar operations

	5.3. Miscellaneous function support

	5.4. Vector rounding

	5.5. Short-cuts

	5.6. Rotation

	5.7. Magnitudes

	5.8. Dot and cross products

	5.9. Projection

	6. Recipes
	6.1. Player Position

	6.2. Blocks

	6.3. Auto Bridge

	6.4. Events

	6.5. Shapes

	6.6. Animation

	6.7. Minecraft TV

	7. Frequently Asked Questions

	8. API Reference

	9. API - The World class
	9.1. World

	9.2. Checkpoint

	9.3. Camera

	10. API - The Block class
	10.1. Block

	10.2. BLOCK_COLORS

	10.3. Compatibility

	11. API - Vector, vector_range, etc.
	11.1. Vector

	11.2. Short-hand variants

	11.3. vector_range

	11.4. line

	11.5. lines

	12. API - Events
	12.1. Events

	12.2. BlockHitEvent

	12.3. PlayerPosEvent

	12.4. IdleEvent

	13. API - Connections and Batches
	13.1. Connection

	14. API - Players
	14.1. Player

	14.2. HostPlayer

	15. API - Exceptions
	15.1. Exceptions

	16. The Minecraft network protocol
	16.1. Specification

	16.2. Critique

	17. Change log
	17.1. Release 0.4 (2015-07-19)

	17.2. Release 0.3 (2015-06-21)

	17.3. Release 0.2 (2015-06-08)

	17.4. Release 0.1 (2015-06-07)

	18. License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

1. Python 2.7+ Installation

There are several ways to install picraft under Python 2.7 (or above), each
with their own advantages and disadvantages. Have a read of the sections below
and select an installation method which conforms to your needs.

1.1. Raspbian installation

If you are using the Raspbian [http://www.raspbian.org/] distro, it is best to install picraft using
the system’s package manager: apt. This will ensure that picraft is easy to
keep up to date, and easy to remove should you wish to do so. It will also make
picraft available for all users on the system. To install picraft using apt
simply:

$ sudo apt-get update
$ sudo apt-get install python-picraft

To upgrade your installation when new releases are made you can simply use
apt’s normal upgrade procedure:

$ sudo apt-get update
$ sudo apt-get upgrade

If you ever need to remove your installation:

$ sudo apt-get remove python-picraft

1.2. User installation

This is the simplest (non-apt) form of installation, but bear in mind that it
will only work for the user you install under. For example, if you install as
the pi user, you will only be able to use picraft as the pi user. If
you run python as root (e.g. with sudo python) it will not find the module.
See System installation below if you require a root installation.

To install as your current user:

$ sudo apt-get install python-pip
$ pip install --user picraft

Note that pip is not run with sudo; this is deliberate. To upgrade
your installation when new releases are made:

$ pip install --user -U picraft

If you ever need to remove your installation:

$ pip uninstall picraft

1.3. System installation

A system installation will make picraft accessible to all users (in contrast
to the user installation). It is as simple to perform as the user installation
and equally easy to keep updated. To perform the installation:

$ sudo apt-get install python-pip
$ sudo pip install picraft

To upgrade your installation when new releases are made:

$ sudo pip install -U picraft

If you ever need to remove your installation:

$ sudo pip uninstall picraft

1.4. Virtualenv installation

If you wish to install picraft within a virtualenv (useful if you’re working
on several Python projects with potentially conflicting dependencies, or you
just like keeping things separate and easily removable):

$ sudo apt-get install python-pip python-virtualenv
$ virtualenv sandbox
$ source sandbox/bin/activate
(sandbox) $ pip install picraft

Bear in mind that each time you want to use picraft you will need to activate
the virtualenv before running Python:

$ source sandbox/bin/activate
(sandbox) $ python
>>> import picraft

To upgrade your installation, make sure the virtualenv is activated and just
use pip:

$ source sandbox/bin/activate
(sandbox) $ pip install -U picraft

To remove your installation simply blow away the virtualenv:

$ rm -fr ~/sandbox/

1.5. Development installation

If you wish to develop picraft itself, it is easiest to obtain the source by
cloning the GitHub repository and then use the “develop” target of the Makefile
which will install the package as a link to the cloned repository allowing
in-place development (it also builds a tags file for use with vim/emacs with
Exuberant’s ctags utility). The following example demonstrates this method
within a virtual Python environment:

$ sudo apt-get install build-essential git git-core exuberant-ctags \
 python-virtualenv
$ virtualenv sandbox
$ source sandbox/bin/activate
(sandbox) $ git clone https://github.com/waveform80/picraft.git
(sandbox) $ cd picraft
(sandbox) $ make develop

To pull the latest changes from git into your clone and update your
installation:

$ source sandbox/bin/activate
(sandbox) $ cd picraft
(sandbox) $ git pull
(sandbox) $ make develop

To remove your installation blow away the sandbox and the clone:

$ rm -fr ~/sandbox/ ~/picraft/

Even if you don’t feel up to hacking on the code, I’d love to hear suggestions
from people of what you’d like the API to look like (even if the code itself
isn’t particularly pythonic, the interface should be)!

1.6. Test suite

If you wish to run the picraft test suite, follow the instructions in
Development installation above and then execute the following command:

(sandbox) $ make test

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

2. Python 3.2+ Installation

There are several ways to install picraft under Python 3.2 (or above), each
with their own advantages and disadvantages. Have a read of the sections below
and select an installation method which conforms to your needs.

2.1. Raspbian installation

If you are using the Raspbian [http://www.raspbian.org/] distro, it is best to install picraft using
the system’s package manager: apt. This will ensure that picraft is easy to
keep up to date, and easy to remove should you wish to do so. It will also make
picraft available for all users on the system. To install picraft using apt
simply:

$ sudo apt-get update
$ sudo apt-get install python3-picraft

To upgrade your installation when new releases are made you can simply use
apt’s normal upgrade procedure:

$ sudo apt-get update
$ sudo apt-get upgrade

If you ever need to remove your installation:

$ sudo apt-get remove python3-picraft

2.2. User installation

This is the simplest (non-apt) form of installation, but bear in mind that it
will only work for the user you install under. For example, if you install as
the pi user, you will only be able to use picraft as the pi user. If
you run python as root (e.g. with sudo python) it will not find the module.
See System installation below if you require a root installation.

To install as your current user:

$ sudo apt-get install python3-pip
$ pip-3.2 install --user picraft

Note that pip-3.2 is not run with sudo; this is deliberate. To
upgrade your installation when new releases are made:

$ pip-3.2 install --user -U picraft

If you ever need to remove your installation:

$ pip-3.2 uninstall picraft

2.3. System installation

A system installation will make picraft accessible to all users (in contrast
to the user installation). It is as simple to perform as the user installation
and equally easy to keep updated. To perform the installation:

$ sudo apt-get install python3-pip
$ sudo pip-3.2 install picraft

To upgrade your installation when new releases are made:

$ sudo pip-3.2 install -U picraft

If you ever need to remove your installation:

$ sudo pip-3.2 uninstall picraft

2.4. Virtualenv installation

If you wish to install picraft within a virtualenv (useful if you’re working
on several Python projects with potentially conflicting dependencies, or you
just like keeping things separate and easily removable):

$ sudo apt-get install python3-pip python-virtualenv
$ virtualenv -p python3 sandbox
$ source sandbox/bin/activate
(sandbox) $ pip-3.2 install picraft

Bear in mind that each time you want to use picraft you will need to activate
the virtualenv before running Python:

$ source sandbox/bin/activate
(sandbox) $ python
>>> import picraft

To upgrade your installation, make sure the virtualenv is activated and just
use pip:

$ source sandbox/bin/activate
(sandbox) $ pip-3.2 install -U picraft

To remove your installation simply blow away the virtualenv:

$ rm -fr ~/sandbox/

2.5. Development installation

If you wish to develop picraft itself, it is easiest to obtain the source by
cloning the GitHub repository and then use the “develop” target of the Makefile
which will install the package as a link to the cloned repository allowing
in-place development (it also builds a tags file for use with vim/emacs with
Exuberant’s ctags utility). The following example demonstrates this method
within a virtual Python environment:

$ sudo apt-get install build-essential git git-core exuberant-ctags \
 python-virtualenv
$ virtualenv -p python3 sandbox
$ source sandbox/bin/activate
(sandbox) $ git clone https://github.com/waveform80/picraft.git
(sandbox) $ cd picraft
(sandbox) $ make develop

To pull the latest changes from git into your clone and update your
installation:

$ source sandbox/bin/activate
(sandbox) $ cd picraft
(sandbox) $ git pull
(sandbox) $ make develop

To remove your installation blow away the sandbox and the clone:

$ rm -fr ~/sandbox/ ~/picraft/

Even if you don’t feel up to hacking on the code, I’d love to hear suggestions
from people of what you’d like the API to look like (even if the code itself
isn’t particularly pythonic, the interface should be)!

2.6. Test suite

If you wish to run the picraft test suite, follow the instructions in
Development installation above and then execute the following command:

(sandbox) $ make test

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

3. Quick Start

The first thing you need to learn in picraft is vectors, and vector ranges. Er,
the two things you need to learn in picraft are vectors, vector ranges, and
blocks. The three things ... look, I’ll just come in again.

Firstly, ensure that you have a Minecraft game [https://www.raspberrypi.org/documentation/usage/minecraft/README.md] running on your Pi. Now start
a terminal, start Python within the terminal, import the picraft library and
start a connection to the Minecraft world:

>>> from picraft import *
>>> world = World()

The World class is the usual starting point for picraft
scripts. It provides access to the blocks that make up the world, the players
within the world, methods to save and restore the state of the world, and the
ability to print things to the chat console. Let’s start by printing something
to the console:

>>> world.say('Hello, world!')

You should see “Hello, world!” appear in the chat console of the Minecraft
game. Next, we can query where we’re standing with the
pos attribute of the
player attribute:

>>> world.player.pos
Vector(x=-2.49725, y=18.0, z=-4.21989)

This tells us that our character is standing at the 3-dimensional coordinates
-2.49, 18.0, -4.22 (approximately). In the Minecraft world, the X and Z
coordinates (the first and last) form the “ground plane”. In other words you
can think of X as going left to right, and Z as going further to nearer. The Y
axis represents height (it goes up and down). We can find out our player’s
coordinates rounded to the nearest block with the
tile_pos attribute:

>>> world.player.tile_pos
Vector(x=-3, y=18, z=-5)

Therefore, we can make our character jump in the air by adding a certain amount
to the player’s Y coordinate. To do this we need to construct a
Vector with a positive Y value and add it to the
tile_pos attribute:

>>> world.player.tile_pos = world.player.tile_pos + Vector(y=5)

We can also use a Python short-hand for this:

>>> world.player.tile_pos += Vector(y=5)

This demonstrates one way of constructing a Vector.
We can also construct one by listing all 3 coordinates explicitly:

>>> Vector(y=5)
Vector(x=0, y=5, z=0)
>>> Vector(0, 5, 0)
Vector(x=0, y=5, z=0)

We can use the blocks attribute to discover the
type of each block in the world. For example, we can find out what sort of
block we’re currently standing on:

>>> world.blocks[world.player.tile_pos - Vector(y=1)]
<Block "grass" id=2 data=0>

We can assign values to this property to change the sort of block we’re
standing on. In order to do this we need to construct a new
Block instance which can be done by specifying the
id manually, or by name:

>>> Block(1)
<Block "stone" id=1 data=0>
>>> Block('stone')
<Block "stone" id=1 data=0>

Now we’ll change the block beneath our feet:

>>> world.blocks[world.player.tile_pos - Vector(y=1)] = Block('stone')

We can query the state of many blocks surrounding us by providing a vector
slice to the blocks attribute. To make things
a little easier we’ll store the base position first:

>>> v = world.player.tile_pos - Vector(y=1)
>>> world.blocks[v - Vector(1, 0, 1):v + Vector(2, 1, 2)]
[<Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "stone" id=1 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>,
 <Block "grass" id=2 data=0>]

Note that the range provided (as with all ranges in Python) is half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html],
which is to say that the lower end of the range is inclusive while the upper
end is exclusive. You can see this explicitly with the
vector_range() function:

>>> v
Vector(x=-2, y=14, z=3)
>>> list(vector_range(v - Vector(1, 0, 1), v + Vector(2, 1, 2)))
[Vector(x=-3, y=14, z=2),
 Vector(x=-3, y=14, z=3),
 Vector(x=-3, y=14, z=4),
 Vector(x=-2, y=14, z=2),
 Vector(x=-2, y=14, z=3),
 Vector(x=-2, y=14, z=4),
 Vector(x=-1, y=14, z=2),
 Vector(x=-1, y=14, z=3),
 Vector(x=-1, y=14, z=4)]

This may seem a clunky way of specifying a range and, in the manner shown above
it is. However, most standard infix arithmetic operations applied to a vector
are applied to all its elements:

>>> Vector()
Vector(x=0, y=0, z=0)
>>> Vector() + 1
Vector(x=1, y=1, z=1)
>>> 2 * (Vector() + 1)
Vector(x=2, y=2, z=2)

This makes construction of such ranges or slices considerably easier. For
example, to construct a vertical range of vectors from the origin (0, 0, 0) to
(0, 10, 0) we first assign the origin to v which we use for the start of
the range, then add Vector(y=10) to it, and finally add one to compensate
for the half-open nature of the range:

>>> v = Vector()
>>> list(vector_range(v, v + Vector(y=10) + 1))
[Vector(x=0, y=0, z=0),
 Vector(x=0, y=1, z=0),
 Vector(x=0, y=2, z=0),
 Vector(x=0, y=3, z=0),
 Vector(x=0, y=4, z=0),
 Vector(x=0, y=5, z=0),
 Vector(x=0, y=6, z=0),
 Vector(x=0, y=7, z=0),
 Vector(x=0, y=8, z=0),
 Vector(x=0, y=9, z=0),
 Vector(x=0, y=10, z=0)]

We can also re-write the example before this (the blocks surrounding the one
the player is standing on) in several different ways:

>>> v = world.player.tile_pos
>>> list(vector_range(v - 1, v + 2 - Vector(y=2)))
[Vector(x=-3, y=14, z=2),
 Vector(x=-3, y=14, z=3),
 Vector(x=-3, y=14, z=4),
 Vector(x=-2, y=14, z=2),
 Vector(x=-2, y=14, z=3),
 Vector(x=-2, y=14, z=4),
 Vector(x=-1, y=14, z=2),
 Vector(x=-1, y=14, z=3),
 Vector(x=-1, y=14, z=4)]

We can change the state of many blocks at once similarly by assigning a new
Block object to a slice of blocks:

>>> v = world.player.tile_pos
>>> world.blocks[v - 1:v + 2 - Vector(y=2)] = Block('stone')

This is a relatively quick operation, as it only involves a single network
call. However, re-writing the state of multiple blocks with different values
is more time consuming:

>>> world.blocks[v - 1:v + 2 - Vector(y=2)] = [
... Block('wool', data=i) for i in range(9)]

You should notice that the example above takes a few seconds to process (each
block requires a separate network transaction and due to deficiencies in the
Minecraft network protocol, each transaction takes a while to
execute). This can be accomplished considerably more quickly by batching
multiple requests together:

>>> world.blocks[v - 1:v + 2 - Vector(y=2)] = Block('stone')
>>> with world.connection.batch_start():
... world.blocks[v - 1:v + 2 - Vector(y=2)] = [
... Block('wool', data=i) for i in range(9)]

Finally, the state of the Minecraft world can be saved and restored easily with
the checkpoint object:

>>> world.checkpoint.save()
>>> world.blocks[v - 1:v + 2 - Vector(y=2)] = Block('stone')
>>> world.checkpoint.restore()

In order to understand vectors, it can help to visualize them. Pick a
relatively open area in the game world.

[image: _images/quick1.png]
We’ll save the vector of your player’s position as v then add 3 to it. This
moves the vector 3 along each axis (X, Y, and Z). Next, we’ll make the block
at v into stone:

>>> v = world.player.tile_pos
>>> v = v + 3
>>> world.blocks[v] = Block('stone')

[image: _images/quick2.png]
Now we’ll explore vector slices a bit by making a line along X+5 into stone.
Remember that slices (and ranges) are half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html] so we need to add an extra
1 to the end of the slice:

>>> world.blocks[v:v + Vector(x=5) + 1] = Block('stone')

[image: _images/quick3.png]
In order to visualize the three different axes of vectors we’ll now draw them
each. Here we also use a capability of the Block
constructor to create a block with a particular color:

>>> world.blocks[v:v + Vector(x=5) + 1] = Block('#ff0000')
>>> world.blocks[v:v + Vector(y=5) + 1] = Block('#00ff00')
>>> world.blocks[v:v + Vector(z=5) + 1] = Block('#0000ff')

[image: _images/quick4.png]
Finally, we can use a vector range to demonstrate patterns. Firstly we wipe
out our axes by setting the entire block to “air”. Then we define a vector
range over the same block with a step of 2, and iterate over each vector within
setting it to diamond:

>>> world.blocks[v:v + 6] = Block('air')
>>> r = vector_range(v, v + 6, Vector() + 2)
>>> for rv in r:
... world.blocks[rv] = Block('diamond_block')

Once again, we can make use of a batch to speed this up:

>>> world.blocks[v:v + 6] = Block('air')
>>> with world.connection.batch_start():
... for rv in r:
... world.blocks[rv] = Block('diamond_block')

[image: _images/quick5.png]
This concludes the quick tour of the picraft library. Conversion instructions
from mcpi can be found in the next chapter, followed by picraft recipes in the
chapter after that. Finally, the API reference can be found at the end of the
manual.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

4. Conversion from mcpi

If you have existing scripts that use the reference implementation
(minecraft-pi aka mcpi), and you wish to convert them to using the picraft
library, this section contains details and examples covering equivalent
functionality between the libraries.

4.1. Minecraft.create

Equivalent: World

To create a connection using default settings is similar in both libraries:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()

>>> from picraft import World
>>> w = World()

Creating a connection with an explicit hostname and port is also similar:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create('localhost', 4711)

>>> from picraft import World
>>> w = World('localhost', 4711)

4.2. Minecraft.getBlock

See Minecraft.getBlockWithData below.

4.3. Minecraft.getBlockWithData

Equivalent: blocks

Accessing the id of a block is rather different. There is no direct equivalent
to getBlock, just getBlockWithData (as there’s no difference in
operational cost so there’s little point in retrieving a block id without the
data). In mcpi this is done by executing a method; in picraft this is done by
querying an attribute with a Vector:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlock(0, -1, 0)
2
>>> mc.getBlockWithData(0, -1, 0)
Block(2, 0)

>>> from picraft import World, Vector
>>> w = World()
>>> w.blocks[Vector(0, -1, 0)]
<Block "grass" id=2 data=0>

The id and data can be extracted from the Block tuple
that is returned:

>>> w.blocks[Vector(0, -1, 0)].id
2
>>> w.blocks[Vector(0, -1, 0)].data
0

4.4. Minecraft.setBlock

Equivalent: blocks

Setting the id (and optionally data) of a block is also rather different. In
picraft the same attribute is used as for accessing block ids; just assign a
Block instance to the attribute, instead of querying
it:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlock(0, -1, 0)
2
>>> mc.setBlock(0, -1, 0, 1, 0)

>>> from picraft import World, Vector, Block
>>> w = World()
>>> w.blocks[Vector(0, -1, 0)]
<Block "grass" id=2 data=0>
>>> w.blocks[Vector(0, -1, 0)] = Block(1, 0)

4.5. Minecraft.setBlocks

Equivalent: blocks

Again, the same attribute as for setBlock is used for setBlocks; just
pass a slice of vectors instead of a single
vector (the example below shows an easy method of generating such a slice by
adding two vectors together for the upper end of the slice):

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getBlock(0, -1, 0)
2
>>> mc.setBlocks(0, -1, 0, 0, 5, 0, 1, 0)

>>> from picraft import World, Vector, Block
>>> w = World()
>>> v = Vector(0, -1, 0)
>>> w.blocks[v]
<Block "grass" id=2 data=0>
>>> w.blocks[v:v + Vector(1, 7, 1)] = Block(1, 0)

4.6. Minecraft.getHeight

Equivalent: height

Retrieving the height of the world in a specific location is done with an
attribute (like retrieving the id and type of blocks). Unlike mcpi, you
pass a full vector (of which the Y-coordinate is ignored), and the property
returns a full vector with the same X- and Z-coordinates, but the Y-coordinate
of the first non-air block from the top of the world:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getHeight(0, 0)
0

>>> from picraft import World, Vector
>>> w = World()
>>> w.height[Vector(0, -10, 0)]
Vector(x=0, y=0, z=0)

4.7. Minecraft.getPlayerEntityIds

Equivalent: players

The connected player’s entity ids can be retrieved by iterating over the
players attribute which acts as a mapping from
player id to Player instances:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.getPlayerEntityIds()
[1]

>>> from picraft import World
>>> w = World()
>>> list(w.players)
[1]

4.8. Minecraft.saveCheckpoint

Equivalent: save()

Checkpoints can be saved in a couple of ways with picraft. Either you can
explicitly call the save() method, or you
can use the checkpoint attribute as a context
manager:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.saveCheckpoint()

>>> from picraft import World
>>> w = World()
>>> w.checkpoint.save()

In the context manager case, the checkpoint will be saved upon entry to the
context and will only be restored if an exception occurs within the context:

>>> from picraft import World, Vector, Block
>>> w = World()
>>> with w.checkpoint:
... # Do something with blocks...
... w.blocks[Vector()] = Block.from_name('stone')

4.9. Minecraft.restoreCheckpoint

Equivalent: restore()

As with saving a checkpoint, either you can call
restore() directly:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.saveCheckpoint()
>>> mc.restoreCheckpoint()

>>> from picraft import World
>>> w = World()
>>> w.checkpoint.save()
>>> w.checkpoint.restore()

Or you can use the context manager to restore the checkpoint automatically in
the case of an exception:

>>> from picraft import World, Vector, Block
>>> w = World()
>>> with w.checkpoint:
... # Do something with blocks
... w.blocks[Vector()] = Block.from_name('stone')
... # Raising an exception within the block will implicitly
... # cause the checkpoint to restore
... raise Exception('roll back to the checkpoint')

4.10. Minecraft.postToChat

Equivalent: say()

The postToChat method is simply replaced with the
say() method with the one exception that the latter
correctly recognizes line breaks in the message:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.postToChat('Hello world!')

>>> from picraft import World
>>> w = World()
>>> w.say('Hello world!')

4.11. Minecraft.setting

Equivalent: immutable and nametags_visible

The setting method is replaced with (write-only) properties with the
equivalent names to the settings that can be used:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.setting('world_immutable', True)
>>> mc.setting('nametags_visible', True)

>>> from picraft import World
>>> w = World()
>>> w.immutable = True
>>> w.nametags_visible = True

4.12. Minecraft.player.getPos

Equivalent: pos

The player.getPos and player.setPos methods are replaced with the
pos attribute which returns a
Vector of floats and accepts the same to move the host
player:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getPos()
Vec3(12.7743,12.0,-8.39158)
>>> mc.player.setPos(12,12,-8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.player.pos
Vector(x=12.7743, y=12.0, z=-8.39158)
>>> w.player.pos = Vector(12, 12, -8)

One advantage of this implementation is that adjusting the player’s position
relatively to their current one becomes simple:

>>> w.player.pos += Vector(y=20)

4.13. Minecraft.player.setPos

See Minecraft.player.getPos above.

4.14. Minecraft.player.getTilePos

Equivalent: tile_pos

The player.getTilePos and player.setTilePos methods are replaced with
the tile_pos attribute which returns a
Vector of ints, and accepts the same to move the
host player:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getTilePos()
Vec3(12,12,-9)
>>> mc.player.setTilePos(12, 12, -8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.player.tile_pos
Vector(x=12, y=12, z=-9)
>>> w.player.tile_pos += Vector(y=20)

4.15. Minecraft.player.setTilePos

See Minecraft.player.getTilePos above.

4.16. Minecraft.player.setting

Equivalent: autojump

The player.setting method is replaced with the write-only
autojump attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.setting('autojump', False)

>>> from picraft import World
>>> w = World()
>>> w.player.autojump = False

4.17. Minecraft.player.getRotation

Equivalent: heading

The player.getRotation method is replaced with the read-only
heading attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getRotation()
49.048615

>>> from picraft import World
>>> w = World()
>>> w.player.heading
49.048615

4.18. Minecraft.player.getPitch

Equivalent: pitch

The player.getPitch method is replaced with the read-only
pitch attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getPitch()
4.3500223

>>> from picraft import World
>>> w = World()
>>> w.player.pitch
4.3500223

4.19. Minecraft.player.getDirection

Equivalent: direction

The player.getDuration method is replaced with the read-only
duration attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.player.getDirection()
Vec3(0.1429840348766887,-0.3263934845430674,0.934356922711132)

>>> from picraft import World
>>> w = World()
>>> w.player.direction
Vector(x=0.1429840348766887, y=-0.3263934845430674, z=0.934356922711132)

4.20. Minecraft.entity.getPos

Equivalent: pos

The entity.getPos and entity.setPos methods are replaced with the
pos attribute. Access the relevant
Player instance by indexing the
players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getPos(1)
Vec3(12.7743,12.0,-8.39158)
>>> mc.entity.setPos(1, 12, 12, -8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.players[1].pos
Vector(x=12.7743, y=12.0, z=-8.39158)
>>> w.players[1].pos = Vector(12, 12, -8)

4.21. Minecraft.entity.setPos

See Minecraft.entity.getPos above.

4.22. Minecraft.entity.getTilePos

Equivalent: tile_pos

The entity.getTilePos and entity.setTilePos methods are replaced with
the tile_pos attribute. Access the relevant
Player instance by indexing the
players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getTilePos(1)
Vec3(12,12,-9)
>>> mc.entity.setTilePos(1, 12, 12, -8)

>>> from picraft import World, Vector
>>> w = World()
>>> w.players[1].tile_pos
Vector(x=12, y=12, z=-9)
>>> w.players[1].tile_pos += Vector(y=20)

4.23. Minecraft.entity.setTilePos

See Minecraft.entity.getTilePos above.

4.24. Minecraft.entity.getRotation

Equivalent: heading

The entity.getRotation method is replaced with the read-only
heading attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getRotation(213)
49.048615

>>> from picraft import World
>>> w = World()
>>> w.players[213].heading
49.048615

4.25. Minecraft.entity.getPitch

Equivalent: pitch

The entity.getPitch method is replaced with the read-only
pitch attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getPitch(213)
4.3500223

>>> from picraft import World
>>> w = World()
>>> w.players[213].pitch
4.3500223

4.26. Minecraft.entity.getDirection

Equivalent: direction

The entity.getDuration method is replaced with the read-only
duration attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.entity.getDirection(213)
Vec3(0.1429840348766887,-0.3263934845430674,0.934356922711132)

>>> from picraft import World
>>> w = World()
>>> w.players[213].direction
Vector(x=0.1429840348766887, y=-0.3263934845430674, z=0.934356922711132)

4.27. Minecraft.camera.setNormal

Equivalent: first_person()

The camera attribute in picraft holds a
Camera instance which controls the camera in the
Minecraft world. The first_person() method can be
used to set the camera to view the world through the eyes of the specified
player. The player is specified as the world’s
player attribute, or as a player retrieved from
the players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.camera.setNormal()
>>> mc.camera.setNormal(2)

>>> from picraft import World
>>> w = World()
>>> w.camera.first_person(w.player)
>>> w.camera.first_person(w.players[2])

4.28. Minecraft.camera.setFollow

Equivalent: third_person()

The camera attribute in picraft holds a
Camera instance which controls the camera in the
Minecraft world. The third_person() method can be
used to set the camera to view the specified player from above. The player is
specified as the world’s player attribute, or as a
player retrieved from the players attribute:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.camera.setFollow()
>>> mc.camera.setNormal(1)

>>> from picraft import World
>>> w = World()
>>> w.camera.third_person(w.player)
>>> w.camera.third_person(w.players[1])

4.29. Minecraft.camera.setFixed

Equivalent: pos

The pos attribute can be passed a
Vector instance to specify the absolute position of
the camera. The camera will be pointing straight down (y=-1) from the given
position and will not move to follow any entity:

>>> import mcpi.minecraft as minecraft
>>> mc = minecraft.Minecraft.create()
>>> mc.camera.setFixed()
>>> mc.camera.setPos(0,20,0)

>>> from picraft import World, Vector
>>> w = World()
>>> w.camera.pos = Vector(0, 20, 0)

4.30. Minecraft.camera.setPos

See Minecraft.camera.setFixed above.

4.31. Minecraft.block.Block

Equivalent: Block

The Block class in picraft is similar to the Block
class in mcpi but with one major difference: in picraft a Block instance
is a tuple descendent and therefore immutable (you cannot change the id or
data attributes of a Block instance).

This may seem like an arbitrary barrier, but firstly its quite rare to
adjust the the id or data attribute (it’s rather more common to just overwrite
a block in the world with an entirely new type), and secondly this change
permits blocks to be used as keys in a Python dictionary, or to be stored
in a set.

The Block class also provides several means of
construction, and additional properties:

>>> from picraft import Block
>>> Block(1, 0)
<Block "stone" id=1 data=0>
>>> Block(35, 1)
<Block "wool" id=35 data=1>
>>> Block.from_name('wool', data=1).description
u'Orange Wool'
>>> Block.from_color('#ffffff').description
u'White Wool'

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

5. Vectors

Vectors are a crucial part of working with picraft; sufficiently important to
demand their own section. This chapter introduces all the major vector
operations with simple examples and diagrams illustrating the results.

5.1. Vector-vector operations

The picraft Vector class is extremely flexible and
supports a wide variety of operations. All Python’s built-in operations
(addition, subtraction, division, multiplication, modulus, absolute, bitwise
operations, etc.) are supported between two vectors, in which case the
operation is performed element-wise. In other words, adding two vectors A
and B produces a new vector with its x attribute set to A.x + B.x,
its y attribute set to A.y + B.y and so on:

>>> from picraft import *
>>> Vector(1, 1, 0) + Vector(1, 0, 1)
Vector(x=2, y=1, z=1)

[image: _images/vector1.png]
Likewise for subtraction, multiplication, etc.:

>>> p = Vector(1, 2, 3)
>>> q = Vector(3, 2, 1)
>>> p - q
Vector(x=-2, y=0, z=2)
>>> p * q
Vector(x=3, y=4, z=3)
>>> p % q
Vector(x=1, y=0, z=0)

[image: _images/vector2.png]

5.2. Vector-scalar operations

Vectors also support several operations between themselves and a scalar value.
In this case the operation with the scalar is applied to each element of the
vector. For example, multiplying a vector by the number 2 will return a new
vector with every element of the original multiplied by 2:

>>> p * 2
Vector(x=2, y=4, z=6)
>>> p + 2
Vector(x=3, y=4, z=5)
>>> p // 2
Vector(x=0, y=1, z=1)

[image: _images/vector3.png]

5.3. Miscellaneous function support

Vectors also support several of Python’s built-in functions:

>>> abs(Vector(-1, 0, 1))
Vector(x=1, y=0, z=1)
>>> pow(Vector(1, 2, 3), 2)
Vector(x=1, y=4, z=9)
>>> import math
>>> math.trunc(Vector(1.5, 2.3, 3.7))
Vector(x=1, y=2, z=3)

5.4. Vector rounding

Some built-in functions can’t be directly supported, in which case equivalently
named methods are provided:

>>> p = Vector(1.5, 2.3, 3.7)
>>> p.round()
Vector(x=2, y=2, z=4)
>>> p.ceil()
Vector(x=2, y=3, z=4)
>>> p.floor()
Vector(x=1, y=2, z=3)

[image: _images/vector4.png]

5.5. Short-cuts

Several vector short-hands are also provided. One for the unit vector along
each of the three axes (X, Y, and Z), one for the origin (O), and finally V
which is simply a short-hand for Vector itself. Obviously, these can be used
to simplify many vector-related operations:

>>> X
Vector(x=1, y=0, z=0)
>>> X + Y
Vector(x=1, y=1, z=0)
>>> p = V(1, 2, 3)
>>> p + X
Vector(x=2, y=2, z=3)
>>> p + 2 * Y
Vector(x=1, y=6, z=3)

[image: _images/vector5.png]

5.6. Rotation

From the paragraphs above it should be relatively easy to see how one can
implement vector translation and vector scaling using everyday operations like
addition, subtraction, multiplication and divsion. The third major
transformation usually required of vectors, rotation [http://en.wikipedia.org/wiki/Rotation_group_SO%283%29], is a little harder.
For this, the rotate() method is provided. This
takes two mandatory arguments: the number of degrees to rotate, and a vector
specifying the axis about which to rotate (it is recommended that this is
specified as a keyword argument for code clarity). For example:

>>> p = V(1, 2, 3)
>>> p.rotate(90, about=X)
Vector(x=1.0, y=-3.0, z=2.0)
>>> p.rotate(180, about=Y)
Vector(x=-0.9999999999999997, y=2, z=-3.0)
>>> p.rotate(180, about=Y).round()
Vector(x=-1.0, y=2.0, z=-3.0)

[image: _images/vector6.png]
>>> X.rotate(180, about=X + Y).round()
Vector(x=-0.0, y=1.0, z=-0.0)

[image: _images/vector7.png]
A third optional argument to rotate, origin, permits rotation about an
arbitrary line. When specified, the axis of rotation passes through the point
specified by origin and runs in the direction of the axis specified by
about. Naturally, origin defaults to the origin (0, 0, 0):

>>> (2 * Y).rotate(180, about=Y, origin=2 * X).round()
Vector(x=4.0, y=2.0, z=0.0)
>>> O.rotate(90, about=Y, origin=X).round()
Vector(x=1.0, y=0.0, z=1.0)

[image: _images/vector8.png]
To aid in certain kinds of rotation, the
angle_between() method can be used to determine
the angle between two vectors (in the plane common to both):

>>> X.angle_between(Y)
90.0
>>> p = V(1, 2, 3)
>>> X.angle_between(p)
74.498640433063

[image: _images/vector9.png]

5.7. Magnitudes

The magnitude attribute can be used to determine
the length of a vector (via Pythagoras’ theorem [http://en.wikipedia.org/wiki/Pythagorean_theorem], while the
unit attribute can be used to obtain a vector in
the same direction with a magnitude (length) of 1.0. The
distance_to() method can also be used to calculate
the distance between two vectors (this is simply equivalent to the magnitude of
the vector obtained by subtracting one vector from the other):

>>> p = V(1, 2, 3)
>>> p.magnitude
3.7416573867739413
>>> p.unit
Vector(x=0.2672612419124244, y=0.5345224838248488, z=0.8017837257372732)
>>> p.unit.magnitude
1.0
>>> q = V(2, 0, 1)
>>> p.distance_to(q)
3.0

[image: _images/vector10.png]

5.8. Dot and cross products

The dot [http://en.wikipedia.org/wiki/Dot_product] and cross [http://en.wikipedia.org/wiki/Cross_product] products of a vector with another can be calculated
using the dot() and
cross() methods respectively. These are useful for
determining whether vectors are orthogonal [http://en.wikipedia.org/wiki/Orthogonality] (the dot product of orthogonal
vectors is always 0), for finding a vector perpendicular to the plane of two
vectors (via the cross product), or for finding the volume of a parallelepiped
defined by three vectors, via the triple product [http://en.wikipedia.org/wiki/Triple_product]:

>>> p = V(x=2)
>>> q = V(z=-1)
>>> p.dot(q)
0
>>> r = p.cross(q)
>>> r
Vector(x=0, y=2, z=0)
>>> area_of_pqr = p.cross(q).dot(r)
>>> area_of_pqr
4

[image: _images/vector11.png]

5.9. Projection

The final method provided by the Vector class is
project() which implements scalar projection [https://en.wikipedia.org/wiki/Scalar_projection].
You might think of this as calculating the length of the shadow one vector
casts upon another. Or, put another way, this is the length of one vector
in the direction of another (unit) vector:

>>> p = V(1, 2, 3)
>>> p.project(X)
1.0
>>> q = X + Z
>>> p.project(q)
2.82842712474619
>>> r = q.unit * p.project(q)
>>> r.round(4)
Vector(x=2.0, y=0.0, z=2.0)

[image: _images/vector12.png]

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

6. Recipes

6.1. Player Position

The player’s position can be easily queried with the
pos attribute. The value is a
Vector. For example, on the command line:

>>> world = World()
>>> world.player.pos
Vector(x=2.3, y=1.1, z=-0.81)

Teleporting the player is as simple as assigning a new vector to the player
position. Here we teleport the player into the air by adding 50 to the Y-axis
of the player’s current position (remember that in the Minecraft world, the
Y-axis goes up/down):

>>> world.player.pos = world.player.pos + Vector(y=50)

Or we can use a bit of Python short-hand for this:

>>> world.player.pos += Vector(y=50)

If you want the player position to the nearest block use the
tile_pos instead:

>>> world.player.pos
Vector(x=2, y=1, z=-1)

6.2. Blocks

The state of blocks in the world can be queried and changed by reading and
writing to the blocks attribute. This is indexed
with a Vector (or slice of vectors) and returns or
accepts a Block instance. For example, on the command
line we can find out the type of block we’re standing on like so:

>>> world = World()
>>> p = world.player.tile_pos
>>> world.blocks[p - Y]
<Block "dirt" id=3 data=0>

We can modify the block we’re standing on by assigning a new block type to it:

>>> world.blocks[p - Y] = Block('stone')

We can modify several blocks surrounding the one we’re standing on by assigning
to a slice of blocks. Remember that Python slices are half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html] so the
easiest way to specify the slice is to specify the start and the end
inclusively and then simply add one to the end. Here we’ll change p to
represent the vector of the block beneath our feet, then set it and all
immediately surrounding blocks to stone:

>>> p -= Y
>>> world.blocks[p - (X + Z):p + (X + Z) + 1] = Block('stone')

6.3. Auto Bridge

This recipe (and several others in this chapter) was shamelessly stolen from
Martin O’Hanlon’s excellent site [http://www.stuffaboutcode.com/] which includes lots of recipes (although at
the time of writing they’re all for the mcpi API). In this case the original
script can be found in Martin’s auto-bridge project [http://www.stuffaboutcode.com/2013/02/raspberry-pi-minecraft-auto-bridge.html].

The script tracks the position and likely future position of the player as
they walk through the world. If the script detects the player is about to walk
onto air it changes the block to diamond:

from __future__ import unicode_literals

import time
from picraft import World, Vector, Block
from collections import deque

world = World(ignore_errors=True)
world.say('Auto-bridge active')
try:
 bridge = deque()
 last_pos = None
 while True:
 this_pos = world.player.pos
 if last_pos is not None:
 # Has the player moved more than 0.1 units in a horizontal direction?
 movement = (this_pos - last_pos).replace(y=0.0)
 if movement.magnitude > 0.1:
 # Find the next tile they're going to step on
 next_pos = (this_pos + movement.unit).floor() - Vector(y=1)
 if world.blocks[next_pos] == Block('air'):
 with world.connection.batch_start():
 bridge.append(next_pos)
 world.blocks[next_pos] = Block('diamond_block')
 while len(bridge) > 10:
 world.blocks[bridge.popleft()] = Block('air')
 last_pos = this_pos
 time.sleep(0.01)
except KeyboardInterrupt:
 world.say('Auto-bridge deactivated')
 with world.connection.batch_start():
 while bridge:
 world.blocks[bridge.popleft()] = Block('air')

Note that the script starts by initializing the connection with the
ignore_errors=True parameter. This causes the picraft library to act like
the mcpi library: errors in “set” calls are ignored, but the library reacts
faster because of this. This is necessary in a script like this where rapid
reaction to player behaviour is required.

6.4. Events

The auto-bridge recipe above demonstrates a form of reacting to changes, in
that case player position changing. There is a formal event handling mechanism
in Minecraft, but at the time of writing the API only exposes the “block hit”
event which occurs when a player hits a block with their sword (by right
clicking).

The picraft library provides two different ways of working with events; you can
select whichever one suits your particular application. The basic way of
reacting to events is to periodically “poll” Minecraft for them (with the
poll() method). This will return a list of all
events that occurred since the last time your script polled the server. For
example, the following script prints a message to the console when you hit a
block, detailing the block’s coordinates and the face that you hit:

from time import sleep
from picraft import World

world = World()

while True:
 for event in world.events.poll():
 world.say('Player %d hit face %s of block at %d,%d,%d' % (
 event.player.player_id, event.face,
 event.pos.x, event.pos.y, event.pos.z))
 sleep(0.1)

This is fine for simple scripts but you can probably see how more complex
scripts that check exactly which block has been hit start to involve long
series of if statements which look a bit ugly in code. The following script
creates a couple of blocks near the player on startup: a black block (which
ends the script when hit), and a white block (which makes multi-colored blocks
fall from the sky):

from random import randint
from picraft import World, X, Y, Z, Vector, Block

world = World()

p = world.player.tile_pos
white_pos = p - 2 * X
black_pos = p - 3 * X

world.blocks[white_pos] = Block('#ffffff')
world.blocks[black_pos] = Block('#000000')

running = True
while running:
 for event in world.events.poll():
 if event.pos == white_pos:
 rain = Vector(p.x + randint(-10, 10), p.y + 20, p.z + randint(-10, 10))
 rain_end = world.height[rain]
 world.blocks[rain] = Block('wool', randint(1, 15))
 while rain != rain_end:
 with world.connection.batch_start():
 world.blocks[rain] = Block('air')
 rain -= Y
 world.blocks[rain] = Block('wool', randint(1, 15))
 elif event.pos == black_pos:
 running = False

The alternate method of event handling in picraft is to rely on picraft’s
built-in event loop. This involves “tagging” functions which will react to
block hits with the on_block_hit() decorator, then
running the main_loop() method. This causes
picraft to continually poll the server and call the tagged functions when their
criteria are matched by a block-hit event:

from random import randint
from picraft import World, X, Y, Z, Vector, Block

world = World()

p = world.player.tile_pos
white_pos = p - 2 * X
black_pos = p - 3 * X

world.blocks[white_pos] = Block('#ffffff')
world.blocks[black_pos] = Block('#000000')

@world.events.on_block_hit(pos=black_pos)
def stop_script(event):
 world.connection.close()

@world.events.on_block_hit(pos=white_pos)
def make_it_rain(event):
 rain = Vector(p.x + randint(-10, 10), p.y + 20, p.z + randint(-10, 10))
 rain_end = world.height[rain]
 world.blocks[rain] = Block('wool', randint(1, 15))
 while rain != rain_end:
 with world.connection.batch_start():
 world.blocks[rain] = Block('air')
 rain -= Y
 world.blocks[rain] = Block('wool', randint(1, 15))

world.events.main_loop()

One advantage of this method (other than slightly cleaner code) is that event
handlers can easily be made multi-threaded (to run in parallel with each other)
simply by modifying the decorator used:

from random import randint
from picraft import World, X, Y, Z, Vector, Block

world = World()

p = world.player.tile_pos
white_pos = p - 2 * X
black_pos = p - 3 * X

world.blocks[white_pos] = Block('#ffffff')
world.blocks[black_pos] = Block('#000000')

@world.events.on_block_hit(pos=black_pos)
def stop_script(event):
 world.connection.close()

@world.events.on_block_hit(pos=white_pos, thread=True)
def make_it_rain(event):
 rain = Vector(p.x + randint(-10, 10), p.y + 20, p.z + randint(-10, 10))
 rain_end = world.height[rain]
 world.blocks[rain] = Block('wool', randint(1, 15))
 while rain != rain_end:
 with world.connection.batch_start():
 world.blocks[rain] = Block('air')
 rain -= Y
 world.blocks[rain] = Block('wool', randint(1, 15))

world.events.main_loop()

Now you should find that the rain all falls simultaneously (more or less, given
the constraints of the Pi’s bandwidth!) when you hit the white block multiple
times.

6.5. Shapes

This recipe demonstrates drawing shapes with blocks in the Minecraft world. The
picraft library includes a couple of rudimentary routines for calculating the
points necessary for drawing lines:

	line() which can be used to calculate the positions
along a single line

	lines() which calculates the positions along a series
of lines

Here we will attempt to construct a script which draws each regular polygon
from an equilateral triangle up to a regular octagon. First we start by
defining a function which will generate the points of a regular polygon. This
is relatively simple: the interior angles of a polygon always add up to 180
degrees so the angle to turn each time is 180 divided by the number of sides.
Given an origin and a side-length it’s a simple matter to iterate over each
side generating the necessary point:

from __future__ import division

import math
from picraft import World, Vector, O, X, Y, Z, lines

def polygon(sides, center=O, radius=5):
 angle = 2 * math.pi / sides
 for side in range(sides):
 yield Vector(
 center.x + radius * math.cos(side * angle),
 center.y + radius * math.sin(side * angle))

print(list(polygon(3, center=3*Y)))
print(list(polygon(4, center=3*Y)))
print(list(polygon(5, center=3*Y)))

Next we need a function which will iterate over the number of sides for each
required polygon, using the lines() function to generate
the points required to draw the shape. Then it’s a simple matter to draw each
polygon in turn, wiping it before displaying the next one:

from __future__ import division

import math
from picraft import World, Vector, O, X, Y, Z, lines

def polygon(sides, center=O, radius=5):
 angle = 2 * math.pi / sides
 for side in range(sides):
 yield Vector(
 center.x + radius * math.cos(side * angle),
 center.y + radius * math.sin(side * angle))

def shapes():
 for sides in range(3, 9):
 yield lines(polygon(sides, center=3*Y))

w = World()
for shape in shapes():
 # Draw the shape
 with w.connection.batch_start():
 for p in shape:
 w.blocks[p] = Block('stone')
 sleep(0.5)
 # Wipe the shape
 with w.connection.batch_start():
 for p in shape:
 w.blocks[p] = Block('air')

6.6. Animation

This recipe demonstrates, in a series of steps, the construction of a
simplistic animation system in Minecraft. Our aim is to create a simple stone
cube which rotates about the X axis somewhere in the air. Our first script uses
vector_range() to obtain the coordinates of all blocks
within the cube, then uses the rotate() method to
rotate them about the X axis:

from __future__ import division

from time import sleep
from picraft import World, Vector, X, Y, Z, vector_range, Block

world = World()
world.checkpoint.save()
try:
 cube_range = vector_range(Vector() - 2, Vector() + 2 + 1)
 # Draw frame 1
 state = {}
 for v in cube_range:
 state[v + (5 * Y)] = Block('stone')
 with world.connection.batch_start():
 for v, b in state.items():
 world.blocks[v] = b
 sleep(0.2)
 # Wipe frame 1
 with world.connection.batch_start():
 for v in state:
 world.blocks[v] = Block('air')
 # Draw frame 2
 state = {}
 for v in cube_range:
 state[v.rotate(15, about=X).round() + (5 * Y)] = Block('stone')
 with world.connection.batch_start():
 for v, b in state.items():
 world.blocks[v] = b
 sleep(0.2)
 # and so on...
finally:
 world.checkpoint.restore()

As you can see in the script above we draw the first frame, wait for a bit,
then wipe the frame by setting all coordinates in that frame’s state back to
“air”. Then we draw the second frame and wait for a bit.

Although this approach works, it’s obviously very long winded for lots of
frames. What we want to do is calculate the state of each frame in a function.
This next version demonstrates this approach; we use a generator function to
yield the state of each frame in turn so we can iterate over the frames with
a simple for loop.

We represent the state of a frame of our animation as a dict which maps
coordinates (in the form of Vector instances) to
Block instances:

from __future__ import division

from time import sleep
from picraft import World, Vector, X, Y, Z, vector_range, Block

def animation_frames(count):
 cube_range = vector_range(Vector() - 2, Vector() + 2 + 1)
 for frame in range(count):
 state = {}
 for v in cube_range:
 state[v.rotate(15 * frame, about=X).round() + (5 * Y)] = Block('stone')
 yield state

world = World()
world.checkpoint.save()
try:
 for frame in animation_frames(10):
 # Draw frame
 with world.connection.batch_start():
 for v, b in frame.items():
 world.blocks[v] = b
 sleep(0.2)
 # Wipe frame
 with world.connection.batch_start():
 for v, b in frame.items():
 world.blocks[v] = Block('air')
finally:
 world.checkpoint.restore()

That’s more like it, but the updates aren’t terribly fast despite using the
batch functionality. In order to improve this we should only update those
blocks which have actually changed between each frame. Thankfully, because
we’re storing the state of each as a dict, this is quite easy:

from __future__ import division

from time import sleep
from picraft import World, Vector, X, Y, Z, vector_range, Block

def animation_frames(count):
 cube_range = vector_range(Vector() - 2, Vector() + 2 + 1)
 for frame in range(count):
 yield {
 v.rotate(15 * frame, about=X).round() + (5 * Y): Block('stone')
 for v in cube_range}

def track_changes(states, default=Block('air')):
 old_state = None
 for state in states:
 # Assume the initial state of the blocks is the default ('air')
 if old_state is None:
 old_state = {v: default for v in state}
 # Build a dict of those blocks which changed from old_state to state
 changes = {v: b for v, b in state.items() if old_state.get(v) != b}
 # Blank out blocks which were in old_state but aren't in state
 changes.update({v: default for v in old_state if v not in state})
 yield changes
 old_state = state

world = World()
world.checkpoint.save()
try:
 for state in track_changes(animation_frames(20)):
 with world.connection.batch_start():
 for v, b in state.items():
 world.blocks[v] = b
 sleep(0.2)
finally:
 world.checkpoint.restore()

Note: this still isn’t perfect. Ideally, we would identify contiguous blocks of
coordinates to be updated which have the same block and set them all at the
same time (which will utilize the world.setBlocks call for efficiency).
However, this is relatively complex to do well so I shall leave it as an
exercise for you, dear reader!

6.7. Minecraft TV

If you’ve got a Raspberry Pi camera module, you can build a TV to view a live
feed from the camera in the Minecraft world. Firstly we need to construct a
class which will accept JPEGs from the camera’s MJPEG stream, and render them
as blocks in the Minecraft world. Then we need a class to construct the TV
model itself and enable interaction with it:

from __future__ import division

import io
import time
import picamera
from picraft import World, V, Block
from picraft.block import _BLOCKS_BY_COLOR
from PIL import Image

class MinecraftTVScreen(object):
 def __init__(self, world, origin, size):
 self.world = world
 self.origin = origin
 self.size = size
 self.jpeg = None
 # Construct a palette for PIL
 self.palette = Image.new('P', (1, 1))
 self.palette_len = len(_BLOCKS_BY_COLOR)
 PALETTE = {data: color for color, (id, data) in _BLOCKS_BY_COLOR.items()}
 PALETTE = [PALETTE[i] for i in range(16)]
 self.palette.putpalette(
 [c for rgb in PALETTE for c in rgb] +
 list(PALETTE[0]) * (256 - len(PALETTE))
)

 def write(self, buf):
 if buf.startswith(b'\xff\xd8'):
 if self.jpeg:
 self.jpeg.seek(0)
 self.render(self.jpeg)
 self.jpeg = io.BytesIO()
 self.jpeg.write(buf)

 def close(self):
 self.jpeg = None

 def render(self, jpeg):
 o = self.origin
 img = Image.open(jpeg)
 img = img.resize(self.size, Image.BILINEAR)
 img = img.quantize(self.palette_len, palette=self.palette)
 with self.world.connection.batch_start():
 for x in range(img.size[0]):
 for y in range(img.size[1]):
 self.world.blocks[o + V(0, y, x)] = Block.from_id(35, img.getpixel((x, y)))

class MinecraftTV(object):
 def __init__(self, origin=V(), size=(12, 8)):
 self.camera = picamera.PiCamera()
 self.camera.resolution = (64, int(64 / size[0] * size[1]))
 self.camera.framerate = 2
 self.world = World(ignore_errors=True)
 self.origin = origin
 self.size = V(0, size[1], size[0])
 self.button_vec = None
 self.screen = MinecraftTVScreen(
 self.world, origin + V(0, 1, 1), (size[0] - 2, size[1] - 2))

 def main_loop(self):
 self.create_tv()
 try:
 while True:
 for event in self.world.events.poll():
 if event.pos == self.button_vec:
 if self.camera.recording:
 self.switch_off()
 else:
 self.switch_on()
 time.sleep(0.1)
 finally:
 if self.camera.recording:
 self.switch_off()
 self.destroy_tv()

 def create_tv(self):
 o = self.origin
 self.world.blocks[o:o + self.size + 1] = Block('#ffffff')
 self.world.blocks[
 o + V(0, 1, 1):o + self.size - V(0, 1, 1) + 1] = Block('#000000')
 self.button_vec = o + V(z=2)
 self.world.blocks[self.button_vec] = Block('#800000')

 def destroy_tv(self):
 o = self.origin
 self.world.blocks[o:o + self.size + 1] = Block('air')

 def switch_on(self):
 self.camera.start_recording(self.screen, format='mjpeg')

 def switch_off(self):
 self.camera.stop_recording()
 o = self.origin
 self.world.blocks[
 o + V(0, 1, 1):o + self.size - V(0, 2, 2) + 1] = Block('#000000')

tv = MinecraftTV(origin=V(2, 0, 5), size=(24,16))
tv.main_loop()

Don’t expect to be able to recognize much in the Minecraft TV; the resolution
is extremely low and the color matching is far from perfect. Still, if you
point the camera at obvious blocks of primary colors and move it around slowly
you should see a similar result on the in-game display.

The script includes the ability to position and size the TV as you like, and
you may like to experiment with adding new controls to it!

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

7. Frequently Asked Questions

None yet, but then it’s the first release! Feel free to ask the author, or
add questions to the issue tracker [https://github.com/waveform80/picraft/issues] on GitHub, or even edit this document
yourself and add frequently asked questions you’ve seen on other forums!

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

8. API Reference

The picraft package consists of several modules which permit access to and
modification of a Minecraft world. The package is intended as an alternative
Python API to the “official” Minecraft Python API (for reasons explained in the
Frequently Asked Questions).

The classes defined in most modules of this package are available directly
from the picraft namespace. In other words, the following code is
typically all that is required to access classes in this package:

import picraft

For convenience on the command line you may prefer to simply do the following:

from picraft import *

However, this is frowned upon in code as it pulls everything into the global
namespace, so you may prefer to do something like this:

from picraft import World, Vector, Block

This is the style used in the Recipes chapter. Sometimes, if you are
using the Vector class extensively, you may wish to
use the short-cuts for it:

from picraft import World, V, O, X, Y, Z, Block

The following sections document the various modules available within the
package:

	API - The World class

	API - The Block class

	API - Vector, vector_range, etc.

	API - Events

	API - Connections and Batches

	API - Players

	API - Exceptions

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

9. API - The World class

The world module defines the World class, which is the usual way of
starting a connection to a Minecraft server and which then provides various
attributes allowing the user to query and manipulate that world.

Note

All items in this module are available from the picraft namespace
without having to import picraft.world directly.

The following items are defined in the module:

9.1. World

	
class picraft.world.World(host=u'localhost', port=4711, timeout=0.3, ignore_errors=False)[source]

	Represents a Minecraft world.

This is the primary class that users interact with. Construct an instance
of this class, optionally specifying the host and port of the server
(which default to “localhost” and 4711 respectively). Afterward, the
instance can be used to query and manipulate the minecraft world of the
connected game.

The say() method can be used to send commands to the console, while
the player attribute can be used to manipulate or query the status
of the player character in the world. The players attribute can be
used to manipulate or query other players within the world (this object can
be iterated over to discover players):

>>> from picraft import *
>>> world = World()
>>> len(world.players)
1
>>> world.say('Hello, world!')

	
say(message)[source]

	Displays message in the game’s chat console.

The message parameter must be a string (which may contain multiple
lines). Each line of the message will be sent to the game’s chat
console and displayed immediately. For example:

>>> world.say('Hello, world!')
>>> world.say('The following player IDs exist:\n%s' %
... '\n'.join(str(p) for p in world.players))

	
blocks

	Represents the state of blocks in the Minecraft world.

This property can be queried to determine the type of a block in the
world, or can be set to alter the type of a block. The property can be
indexed with a single Vector, in which case
the state of a single block is returned (or updated) as a
Block object:

>>> world.blocks[g.player.tile_pos]
<Block "grass" id=2 data=0>

Alternatively, a slice of vectors can be used. In this case, when
querying the property, a sequence of Block
objects is returned, When setting a slice of vectors you can either
pass a sequence of Block objects or a single
Block object. The sequence must be equal to
the number of blocks represented by the slice:

>>> world.blocks[Vector(0,0,0):Vector(2,1,1)]
[<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
>>> world.blocks[Vector(0,0,0):Vector(5,1,5)] = Block.from_name('grass')

As with normal Python slices, the interval specified is half-open [http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html].
That is to say, it is inclusive of the lower vector, exclusive of the
upper one. Hence, Vector():Vector(x=5,1,1) represents the
coordinates (0,0,0) to (4,0,0). It is usually useful to specify the
upper bound as the vector you want and then add one to it:

>>> world.blocks[Vector():Vector(x=1) + 1]
[<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
>>> world.blocks[Vector():Vector(4,0,4) + 1] = Block.from_name('grass')

Warning

Querying or setting sequences of blocks can be extremely slow as a
network transaction must be executed for each individual block.
When setting a slice of blocks, this can be speeded up by
specifying a single Block in which case one
network transaction will occur to set all blocks in the slice. The
Raspberry Juice server also supports querying sequences of blocks
with a single command (picraft will automatically use this).
Additionally, batch_start()
can be used to speed up setting sequences of blocks (though not
querying).

	
camera

	Represents the camera of the Minecraft world.

The Camera object contained in this property permits control
of the position of the virtual camera in the Minecraft world. For
example, to position the camera directly above the host player:

>>> world.camera.third_person(world.player)

Alternatively, to see through the eyes of a specific player:

>>> world.camera.first_person(world.players[2])

Warning

Camera control is only supported on Minecraft Pi edition.

	
checkpoint

	Represents the Minecraft world checkpoint system.

The Checkpoint object contained in this attribute provides the
ability to save and restore the state of the world at any time:

>>> world.checkpoint.save()
>>> world.blocks[Vector()] = Block.from_name('stone')
>>> world.checkpoint.restore()

	
connection

	Represents the connection to the Minecraft server.

The Connection object contained in this
attribute represents the connection to the Minecraft server and
provides various methods for communicating with it. Users will very
rarely need to access this attribute, except to use the
batch_start() method.

	
events

	Provides an interface to poll events that occur in the Minecraft world.

The Events object contained in this property
provides methods for determining what is happening in the Minecraft
world:

>>> events = world.events.poll()
>>> len(events)
3
>>> events[0]
<BlockHitEvent pos=1,1,1 face="x+" player=1>
>>> events[0].player.pos
<Vector x=0.5, y=0.0, z=0.5>

	
height

	Represents the height of the Minecraft world.

This property can be queried to determine the height of the world at
any location. The property can be indexed with a single
Vector, in which case the height will be
returned as a vector with the same X and Z coordinates, but a Y
coordinate adjusted to the first non-air block from the top of the
world:

>>> world.height[Vector(0, -10, 0)]
Vector(x=0, y=0, z=0)

Alternatively, a slice of two vectors can be used. In this case, the
property returns a sequence of Vector objects
each with their Y coordinates adjusted to the height of the world at
the respective X and Z coordinates.

	
immutable

	Write-only property which sets whether the world is changeable.

Warning

World settings are only supported on Minecraft Pi edition.

Note

Unfortunately, the underlying protocol provides no means of reading
a world setting, so this property is write-only (attempting to
query it will result in an AttributeError [http://docs.python.org/3.2/library/exceptions.html#AttributeError] being raised).

	
nametags_visible

	Write-only property which sets whether players’ nametags are visible.

Warning

World settings are only supported on Minecraft Pi edition.

Note

Unfortunately, the underlying protocol provides no means of reading
a world setting, so this property is write-only (attempting to
query it will result in an AttributeError [http://docs.python.org/3.2/library/exceptions.html#AttributeError] being raised).

	
player

	Represents the host player in the Minecraft world.

The HostPlayer object returned by this
attribute provides properties which can be used to query the status of,
and manipulate the state of, the host player in the Minecraft world:

>>> world.player.pos
Vector(x=-2.49725, y=18.0, z=-4.21989)
>>> world.player.tile_pos += Vector(y=50)

	
players

	Represents all player entities in the Minecraft world.

This property can be queried to determine which players are currently
in the Minecraft world. The property is a mapping of player id (an
integer number) to a Player object which
permits querying and manipulation of the player. The property supports
many of the methods of dicts and can be iterated over like a dict:

>>> len(world.players)
1
>>> list(world.players)
[1]
>>> world.players.keys()
[1]
>>> world.players[1]
<picraft.player.Player at 0x7f2f91f38cd0>
>>> world.players.values()
[<picraft.player.Player at 0x7f2f91f38cd0>]
>>> world.players.items()
[(1, <picraft.player.Player at 0x7f2f91f38cd0>)]
>>> for player in world.players:
... print(player.tile_pos)
...
-3,18,-5

On the Raspberry Juice platform, you can also use player name to
reference players:

>>> world.players['my_player']
<picraft.player.Player at 0x7f2f91f38cd0>

9.2. Checkpoint

	
class picraft.world.Checkpoint(connection)[source]

	Permits restoring the world state from a prior save.

This class provides methods for storing the state of the Minecraft world,
and restoring the saved state at a later time. The save() method
saves the state of the world, and the restore() method restores
the saved state.

This class can be used as a context manager to take a checkpoint, make
modifications to the world, and roll them back if an exception occurs.
For example, the following code will ultimately do nothing because an
exception occurs after the alteration:

>>> from picraft import *
>>> w = World()
>>> with w.checkpoint:
... w.blocks[w.player.tile_pos - Vector(y=1)] = Block.from_name('stone')
... raise Exception()

Warning

Checkpoints are only supported on Minecraft Pi edition.

Warning

Minecraft only permits a single checkpoint to be stored at any given
time. There is no capability to save multiple checkpoints and no way of
checking whether one currently exists. Therefore, storing a checkpoint
may overwrite an older checkpoint without warning.

Note

Checkpoints don’t work within batches as the checkpoint save will be
batched along with everything else. That said, a checkpoint can be used
outside a batch to roll the entire thing back if it fails:

>>> v = w.player.tile_pos - Vector(y=1)
>>> with w.checkpoint:
... with w.connection.batch_start():
... w.blocks[v - Vector(2, 0, 2):v + Vector(2, 1, 2)] = [
... Block.from_name('wool', data=i) for i in range(16)]

	
restore()[source]

	Restore the state of the Minecraft world from a previously saved
checkpoint. No facility is provided to determine whether a prior
checkpoint is available (the underlying network protocol doesn’t permit
this).

	
save()[source]

	Save the state of the Minecraft world, overwriting any prior checkpoint
state.

9.3. Camera

	
class picraft.world.Camera(connection)[source]

	This class implements the camera attribute.

	
first_person(player)[source]

	Causes the camera to view the world through the eyes of the specified
player. The player can be the player attribute
(representing the host player) or an attribute retrieved from the
players list. For example:

>>> from picraft import World
>>> w = World()
>>> w.camera.first_person(w.player)
>>> w.camera.first_person(w.players[1])

	
third_person(player)[source]

	Causes the camera to follow the specified player from above. The
player can be the player attribute (representing the
host player) or an attribute retrieved from the players
list. For example:

>>> from picraft import World
>>> w = World()
>>> w.camera.third_person(w.player)
>>> w.camera.third_person(w.players[1])

	
pos

	Write-only property which sets the camera’s absolute position in the
world.

Note

Unfortunately, the underlying protocol provides no means of reading
this setting, so this property is write-only (attempting to query
it will result in an AttributeError [http://docs.python.org/3.2/library/exceptions.html#AttributeError] being raised).

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

10. API - The Block class

The block module defines the Block class, which is used to represent
the type of a block and any associated data it may have, and the
Blocks class which is used to implement the
blocks attribute on the
World class.

Note

All items in this module, except the compatibility constants, are available
from the picraft namespace without having to import
picraft.block directly.

The following items are defined in the module:

10.1. Block

	
class picraft.block.Block(id, data)[source]

	Represents a block within the Minecraft world.

Blocks within the Minecraft world are represented by two values: an id
which defines the type of the block (air, stone, grass, wool, etc.) and an
optional data value (defaults to 0) which means different things for
different block types (e.g. for wool it defines the color of the wool).

Blocks are represented by this library as a namedtuple() of the id
and the data. Calculated properties are provided to look up the
name and description of the block from a database derived
from the Minecraft wiki, and classmethods are defined to construct a block
definition from an id or from alternate things like a
name or an RGB color:

>>> Block.from_id(0, 0)
<Block "air" id=0 data=0>
>>> Block.from_id(2, 0)
<Block "grass" id=2 data=0>
>>> Block.from_name('stone')
<Block "stone" id=1 data=0>
>>> Block.from_color('#ffffff')
<Block "wool" id=35 data=0>

The default constructor attempts to guess which classmethod to call based
on the following rules (in the order given):

	If the constructor is passed a string beginning with ‘#’ that is 7
characters long, it calls from_color()

	If the constructor is passed a tuple containing 3 values, it calls
from_color()

	If the constructor is passed a string (not matching the case above)
it calls from_name()

	Otherwise the constructor calls from_id() with all given
parameters

This means that the examples above can be more easily written:

>>> Block(0, 0)
<Block "air" id=0 data=0>
>>> Block(2, 0)
<Block "grass" id=2 data=0>
>>> Block('stone')
<Block "stone" id=1 data=0>
>>> Block('#ffffff')
<Block "wool" id=35 data=0>

Aliases are provided for compatibility with the official reference
implementation (AIR, GRASS, STONE, etc):

>>> import picraft.block
>>> picraft.block.WATER
<Block "flowing_water" id=8 data=0>

	
classmethod from_color(color, exact=False)[source]

	Construct a Block instance from a color which can be
represented as:

	A tuple of (red, green, blue) integer byte values between 0 and
255

	A tuple of (red, green, blue) float values between 0.0 and 1.0

	A string in the format ‘#rrggbb’ where rr, gg, and bb are hexadecimal
representations of byte values.

If exact is False (the default), and an exact match for the
requested color cannot be found, the nearest color (determined simply
by Euclidian distance) is returned. If exact is True and an exact
match cannot be found, a ValueError [http://docs.python.org/3.2/library/exceptions.html#ValueError] will be raised:

>>> from picraft import *
>>> Block.from_color('#ffffff')
<Block "wool" id=35 data=0>
>>> Block.from_color('#ffffff', exact=True)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "picraft/block.py", line 351, in from_color
 if exact:
ValueError: no blocks match color #ffffff
>>> Block.from_color((1, 0, 0))
<Block "wool" id=35 data=14>

Note that calling the default constructor with any of the formats
accepted by this method is equivalent to calling this method:

>>> Block('#ffffff')
<Block "wool" id=35 data=0>

	
classmethod from_id(id, data=0)[source]

	Construct a Block instance from an id integer. This may be
used to construct blocks in the classic manner; by specifying a number
representing the block’s type, and optionally a data value. For
example:

>>> from picraft import *
>>> Block.from_id(1)
<Block "stone" id=1 data=0>
>>> Block.from_id(2, 0)
<Block "grass" id=2 data=0>

The optional data parameter defaults to 0. Note that calling the
default constructor with an integer parameter is equivalent to calling
this method:

>>> Block(1)
<Block "stone" id=1" data=0>

	
classmethod from_name(name, data=0)[source]

	Construct a Block instance from a name, as returned by the
name property. This may be used to construct blocks in a more
“friendly” way within code. For example:

>>> from picraft import *
>>> Block.from_name('stone')
<Block "stone" id=1 data=0>
>>> Block.from_name('wool', data=2)
<Block "wool" id=35 data=2>

The optional data parameter can be used to specify the data component
of the new Block instance; it defaults to 0. Note that calling
the default constructor with a string that doesn’t start with “#” is
equivalent to calling this method:

>>> Block('stone')
<Block "stone" id=1 data=0>

	
id

	The “id” or type of the block. Each block type in Minecraft has a
unique value. For example, air blocks have the id 0, stone, has id 1,
and so forth. Generally it is clearer in code to refer to a block’s
name but it may be quicker to use the id.

	
data

	Certain types of blocks have variants which are dictated by the data
value associated with them. For example, the color of a wool block
is determined by the data attribute (e.g. white is 0, red is 14,
and so on).

	
pi

	Returns a bool indicating whether the block is present in the Pi
Edition of Minecraft.

	
pocket

	Returns a bool indicating whether the block is present in the Pocket
Edition of Minecraft.

	
name

	Return the name of the block. This is a unique identifier string which
can be used to construct a Block instance with
from_name().

	
description

	Return a description of the block. This string is not guaranteed to be
unique and is only intended for human use.

10.2. BLOCK_COLORS

	
picraft.block.BLOCK_COLORS

	A set of the available colors that can be used with
Block.from_color(). Each color is represented as (red, green,
blue) tuple where each component is an integer between 0 and 255.

10.3. Compatibility

Finally, the module also contains compatibility values equivalent to those
in the mcpi.block module of the reference implementation. Each value represents
the type of a block with no associated data:

	AIR
	FURNACE_ACTIVE
	MUSHROOM_RED

	BED
	FURNACE_INACTIVE
	NETHER_REACTOR_CORE

	BEDROCK
	GLASS
	OBSIDIAN

	BEDROCK_INVISIBLE
	GLASS_PANE
	REDSTONE_ORE

	BOOKSHELF
	GLOWING_OBSIDIAN
	SAND

	BRICK_BLOCK
	GLOWSTONE_BLOCK
	SANDSTONE

	CACTUS
	GOLD_BLOCK
	SAPLING

	CHEST
	GOLD_ORE
	SNOW

	CLAY
	GRASS
	SNOW_BLOCK

	COAL_ORE
	GRASS_TALL
	STAIRS_COBBLESTONE

	COBBLESTONE
	GRAVEL
	STAIRS_WOOD

	COBWEB
	ICE
	STONE

	CRAFTING_TABLE
	IRON_BLOCK
	STONE_BRICK

	DIAMOND_BLOCK
	IRON_ORE
	STONE_SLAB

	DIAMOND_ORE
	LADDER
	STONE_SLAB_DOUBLE

	DIRT
	LAPIS_LAZULI_BLOCK
	SUGAR_CANE

	DOOR_IRON
	LAPIS_LAZULI_ORE
	TNT

	DOOR_WOOD
	LAVA
	TORCH

	FARMLAND
	LAVA_FLOWING
	WATER

	FENCE
	LAVA_STATIONARY
	WATER_FLOWING

	FENCE_GATE
	LEAVES
	WATER_STATIONARY

	FIRE
	MELON
	WOOD

	FLOWER_CYAN
	MOSS_STONE
	WOOD_PLANKS

	FLOWER_YELLOW
	MUSHROOM_BROWN
	WOOL

Use these compatibility constants by importing the block module explicitly.
For example:

>>> from picraft import block
>>> block.AIR
<Block "air" id=0 data=0>
>>> block.TNT
<Block "tnt" id=46 data=0>

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

11. API - Vector, vector_range, etc.

The vector module defines the Vector class, which is the usual method
of represent coordinates or vectors when dealing with the Minecraft world. It
also provides functions like vector_range() for generating sequences of
vectors.

Note

All items in this module are available from the picraft namespace
without having to import picraft.vector directly.

The following items are defined in the module:

11.1. Vector

	
class picraft.vector.Vector(x=0, y=0, z=0)[source]

	Represents a 3-dimensional vector.

This tuple derivative represents a 3-dimensional vector with x, y, z
components. Instances can be constructed in a number of ways. By explicitly
specifying the x, y, and z components (optionally with keyword
identifiers), or leaving the empty to default to 0:

>>> Vector(1, 1, 1)
Vector(x=1, y=1, z=1)
>>> Vector(x=2, y=0, z=0)
Vector(x=2, y=0, z=0)
>>> Vector()
Vector(x=0, y=0, z=0)
>>> Vector(y=10)
Vector(x=0, y=10, z=0)

Shortcuts are available for the X, Y, and Z axes:

>>> X
Vector(x=1, y=0, z=0)
>>> Y
Vector(x=0, y=1, z=0)

Note that vectors don’t much care whether their components are integers,
floating point values, or None:

>>> Vector(1.0, 1, 1)
Vector(x=1.0, y=1, z=1)
>>> Vector(2, None, None)
Vector(x=2, y=None, z=None)

The class supports simple arithmetic operations with other vectors such as
addition and subtraction, along with multiplication and division with
scalars, raising to powers, bit-shifting, and so on. Such operations are
performed element-wise [1]:

>>> v1 = Vector(1, 1, 1)
>>> v2 = Vector(2, 2, 2)
>>> v1 + v2
Vector(x=3, y=3, z=3)
>>> 2 * v2
Vector(x=4, y=4, z=4)

Simple arithmetic operations with scalars return a new vector with that
operation performed on all elements of the original. For example:

>>> v = Vector()
>>> v
Vector(x=0, y=0, z=0)
>>> v + 1
Vector(x=1, y=1, z=1)
>>> 2 * (v + 2)
Vector(x=4, y=4, z=4)
>>> Vector(y=2) ** 2
Vector(x=0, y=4, z=0)

Within the Minecraft world, the X,Z plane represents the ground, while the
Y vector represents height.

Note

Note that, as a derivative of tuple, instances of this class are
immutable. That is, you cannot directly manipulate the x, y, and z
attributes; instead you must create a new vector (for example, by
adding two vectors together). The advantage of this is that vector
instances can be used in sets or as dictionary keys.

	[1]	I realize math purists will hate this (and demand that abs() should
be magnitude and * should invoke matrix multiplication), but the
element wise operations are sufficiently useful to warrant the
short-hand syntax.

	
replace(x=None, y=None, z=None)[source]

	Return the vector with the x, y, or z axes replaced with the specified
values. For example:

>>> Vector(1, 2, 3).replace(z=4)
Vector(x=1, y=2, z=4)

	
ceil()[source]

	Return the vector with the ceiling of each component. This is only
useful for vectors containing floating point components:

>>> Vector(0.5, -0.5, 1.2)
Vector(1.0, 0.0, 2.0)

	
floor()[source]

	Return the vector with the floor of each component. This is only useful
for vectors containing floating point components:

>>> Vector(0.5, -0.5, 1.9)
Vector(0.0, -1.0, 1.0)

	
dot(other)[source]

	Return the dot product [http://en.wikipedia.org/wiki/Dot_product] of the vector with the other vector. The
result is a scalar value. For example:

>>> Vector(1, 2, 3).dot(Vector(2, 2, 2))
12
>>> Vector(1, 2, 3).dot(X)
1

	
cross(other)[source]

	Return the cross product [http://en.wikipedia.org/wiki/Cross_product] of the vector with the other vector. The
result is another vector. For example:

>>> Vector(1, 2, 3).cross(Vector(2, 2, 2))
Vector(x=-2, y=4, z=-2)
>>> Vector(1, 2, 3).cross(X)
Vector(x=0, y=3, z=-2)

	
distance_to(other)[source]

	Return the Euclidian distance between two three dimensional points
(represented as vectors), calculated according to Pythagoras’
theorem [http://en.wikipedia.org/wiki/Pythagorean_theorem]. For example:

>>> Vector(1, 2, 3).distance_to(Vector(2, 2, 2))
1.4142135623730951
>>> Vector().distance_to(X)
1.0

	
angle_between(other)[source]

	Returns the angle between this vector and the other vector on a plane
that contains both vectors. The result is measured in degrees. For
example:

>>> X.angle_between(Y)
90.0
>>> (X + Y).angle_between(X)
45.00000000000001

	
project(other)[source]

	Return the scalar projection [https://en.wikipedia.org/wiki/Scalar_projection] of this vector onto the other vector.
This is a scalar indicating the length of this vector in the direction
of the other vector. For example:

>>> Vector(1, 2, 3).project(2 * Y)
2.0
>>> Vector(3, 4, 5).project(Vector(3, 4, 0))
5.0

	
rotate(angle, about, origin=None)[source]

	Return this vector after rotation [https://en.wikipedia.org/wiki/Rotation_group_SO%283%29] of angle degrees about the line
passing through origin in the direction about. Origin defaults to
the vector 0, 0, 0. Hence, if this parameter is omitted this method
calculates rotation about the axis (through the origin) defined by
about. For example:

>>> Y.rotate(90, about=X)
Vector(x=0, y=6.123233995736766e-17, z=1.0)
>>> Vector(3, 4, 5).rotate(30, about=X, origin=10 * Y)
Vector(x=3.0, y=2.3038475772933684, z=1.330127018922194)

Information about rotation around arbitrary lines was obtained from
Glenn Murray’s informative site [http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/].

	
x

	The position or length of the vector along the X-axis. In the Minecraft
world this can be considered to run left-to-right.

	
y

	The position or length of the vector along the Y-axis. In the Minecraft
world this can be considered to run vertically up and down.

	
z

	The position or length of the vector along the Z-axis. In the Minecraft
world this can be considered as depth (in or out of the screen).

	
magnitude

	Returns the magnitude of the vector. This could also be considered the
distance of the vector from the origin, i.e. v.magnitude is
equivalent to Vector().distance_to(v). For example:

>>> Vector(2, 4, 4).magnitude
6.0
>>> Vector().distance_to(Vector(2, 4, 4))
6.0

	
unit

	Return a unit vector [http://en.wikipedia.org/wiki/Unit_vector] (a vector with a magnitude of one) with the
same direction as this vector:

>>> X.unit
Vector(x=1.0, y=0.0, z=0.0)
>>> (2 * Y).unit
Vector(x=0.0, y=1.0, z=0.0)

Note

If the vector’s magnitude is zero, this property returns the
original vector.

11.2. Short-hand variants

The Vector class is used sufficiently often to justify the inclusion
of some shortcuts. The class itself is also available as V, and vectors
representing the three axes are each available as X, Y, and Z.
Finally, a vector representing the origin is available as O:

>>> from picraft import V, O, X, Y, Z
>>> O
Vector(x=0, y=0, z=0)
>>> 2 * X
Vector(x=2, y=0, z=0)
>>> X + Y
Vector(x=1, y=1, z=0)
>>> (X + Y).angle_between(X)
45.00000000000001
>>> V(3, 4, 5).projection(X)
3.0
>>> X.rotate(90, about=Y)
Vector(x=0.0, y=0.0, z=1.0)

11.3. vector_range

	
class picraft.vector.vector_range(start, stop=None, step=None, order=u'zxy')[source]

	Like range() [http://docs.python.org/3.2/library/functions.html#range], vector_range is actually a type which
efficiently represents a range of vectors. The arguments to the constructor
must be Vector instances (or objects which have integer x,
y, and z attributes).

If step is omitted, it defaults to Vector(1, 1, 1). If the start
argument is omitted, it defaults to Vector(0, 0, 0). If any element
of the step vector is zero, ValueError [http://docs.python.org/3.2/library/exceptions.html#ValueError] is raised.

The contents of the range are largely determined by the step and order
which specifies the order in which the axes of the range will be
incremented. For example, with the order 'xyz', the X-axis will be
incremented first, followed by the Y-axis, and finally the Z-axis. So, for
a range with the default start, step, and stop set to Vector(3, 3,
3), the contents of the range will be:

>>> list(vector_range(Vector(3, 3, 3), order='xyz'))
[Vector(0, 0, 0), Vector(1, 0, 0), Vector(2, 0, 0),
 Vector(0, 1, 0), Vector(1, 1, 0), Vector(2, 1, 0),
 Vector(0, 2, 0), Vector(1, 2, 0), Vector(2, 2, 0),
 Vector(0, 0, 1), Vector(1, 0, 1), Vector(2, 0, 1),
 Vector(0, 1, 1), Vector(1, 1, 1), Vector(2, 1, 1),
 Vector(0, 2, 1), Vector(1, 2, 1), Vector(2, 2, 1),
 Vector(0, 0, 2), Vector(1, 0, 2), Vector(2, 0, 2),
 Vector(0, 1, 2), Vector(1, 1, 2), Vector(2, 1, 2),
 Vector(0, 2, 2), Vector(1, 2, 2), Vector(2, 2, 2)]

Vector ranges implement all common sequence operations except concatenation
and repetition (due to the fact that range objects can only represent
sequences that follow a strict pattern and repetition and concatenation
usually cause the resulting sequence to violate that pattern).

Vector ranges are extremely efficient compared to an equivalent
list() [http://docs.python.org/3.2/library/functions.html#list] or tuple() [http://docs.python.org/3.2/library/functions.html#tuple] as they take a small (fixed) amount of
memory, storing only the arguments passed in its construction and
calculating individual items and sub-ranges as requested.

Vector range objects implement the collections.Sequence [http://docs.python.org/3.2/library/collections.html#collections.Sequence] ABC,
and provide features such as containment tests, element index lookup,
slicing and support for negative indices.

The default order ('zxy') may seem an odd choice. This is primarily
used as it’s the order used by the Raspberry Juice server when returning
results from the world.getBlocks call. In turn, Raspberry Juice
probably uses this order as it results in returning a horizontal layer of
vectors at a time (given the Y-axis is used for height in the Minecraft
world).

Warning

Bear in mind that the ordering of a vector range may have a bearing on
tests for its ordering and equality. Two ranges with different orders
are unlikely to test equal even though they may have the same start,
stop, and step attributes (and thus contain the same vectors, but
in a different order).

Vector ranges can be accessed by integer index, by Vector index,
or by a slice of vectors. For example:

>>> v = vector_range(Vector() + 1, Vector() + 3)
>>> list(v)
[Vector(x=1, y=1, z=1),
 Vector(x=1, y=1, z=2),
 Vector(x=2, y=1, z=1),
 Vector(x=2, y=1, z=2),
 Vector(x=1, y=2, z=1),
 Vector(x=1, y=2, z=2),
 Vector(x=2, y=2, z=1),
 Vector(x=2, y=2, z=2)]
>>> v[0]
Vector(x=1, y=1, z=1)
>>> v[Vector(0, 0, 0)]
Vector(x=1, y=1, z=1)
>>> v[Vector(1, 0, 0)]
Vector(x=2, y=1, z=1)
>>> v[-1]
Vector(x=2, y=2, z=2)
>>> v[Vector() - 1]
Vector(x=2, y=2, z=2)
>>> v[Vector(x=1):]
vector_range(Vector(x=2, y=1, z=1), Vector(x=3, y=3, z=3),
 Vector(x=1, y=1, z=1), order='zxy')
>>> list(v[Vector(x=1):])
[Vector(x=2, y=1, z=1),
 Vector(x=2, y=1, z=2),
 Vector(x=2, y=2, z=1),
 Vector(x=2, y=2, z=2)]

However, integer slices are not currently permitted.

	
count(value)[source]

	Return the count of instances of value within the range (note this
can only be 0 or 1 in the case of a range, and thus is equivalent to
testing membership with in).

	
index(value)[source]

	Return the zero-based index of value within the range, or raise
ValueError [http://docs.python.org/3.2/library/exceptions.html#ValueError] if value does not exist in the range.

11.4. line

	
picraft.vector.line(start, end)[source]

	A three-dimensional implementation of Bresenham’s line algorithm [https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm],
derived largely from Bob Pendelton’s implementation [ftp://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d] (public domain).
Given the end points of the line as the start and end vectors, this
generator function yields the coordinate of each block (inclusive of the
start and end vectors) that should be filled in to render the line.

For example:

>>> list(line(O, V(10, 5, 0)))
[Vector(x=0, y=0, z=0),
 Vector(x=1, y=1, z=0),
 Vector(x=2, y=1, z=0),
 Vector(x=3, y=2, z=0),
 Vector(x=4, y=2, z=0),
 Vector(x=5, y=3, z=0),
 Vector(x=6, y=3, z=0),
 Vector(x=7, y=4, z=0),
 Vector(x=8, y=4, z=0),
 Vector(x=9, y=5, z=0),
 Vector(x=10, y=5, z=0)]

11.5. lines

	
picraft.vector.lines(points, closed=True)[source]

	Extension of the line() function which returns all vectors necessary
to render the lines connecting the specified points (which is an iterable
of Vector instances).

If the optional closed parameter is True (the default) the last point
in the points sequence will be connected to the first point. Otherwise,
the lines will be left disconnected (assuming the last point is not
coincident with the first). For example:

>>> points = [O, 4*X, 4*Z]
>>> list(lines(points))
[Vector(x=0, y=0, z=0),
 Vector(x=1, y=0, z=0),
 Vector(x=2, y=0, z=0),
 Vector(x=3, y=0, z=0),
 Vector(x=4, y=0, z=0),
 Vector(x=3, y=0, z=1),
 Vector(x=2, y=0, z=2),
 Vector(x=1, y=0, z=3),
 Vector(x=0, y=0, z=4),
 Vector(x=0, y=0, z=3),
 Vector(x=0, y=0, z=2),
 Vector(x=0, y=0, z=1),
 Vector(x=0, y=0, z=0)]

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

12. API - Events

The events module defines the Events class, which provides methods for
querying events in the Minecraft world, and BlockHitEvent which is the
only event type currently supported.

Note

All items in this module are available from the picraft namespace
without having to import picraft.events directly.

The following items are defined in the module:

12.1. Events

	
class picraft.events.Events(connection)[source]

	This class implements the events attribute.

There are two ways of responding to picraft’s events: the first is to
poll() for them manually, and process each event in the resulting
list:

>>> for event in world.events.poll():
... print(repr(event))
...
<BlockHitEvent pos=1,1,1 face="y+" player=1>,
<PlayerPosEvent old_pos=0.2,1.0,0.7 new_pos=0.3,1.0,0.7 player=1>

The second is to “tag” functions as event handlers with the decorators
provided and then call the main_loop() function which will handle
polling the server for you, and call all the relevant functions as needed:

@world.events.on_block_hit(pos=Vector(1,1,1))
def hit_block(event):
 print('You hit the block at %s' % event.pos)

world.events.main_loop()

By default, only block hit events will be tracked. This is because it is
the only type of event that the Minecraft server provides information about
itself, and thus the only type of event that can be processed relatively
efficiently. If you wish to track player positions, assign a set of player
ids to the track_players attribute. If you wish to include idle
events (which fire when nothing else is produced in response to
poll()) then set include_idle to True.

Finally, the poll_gap attribute specifies how long to pause during
each iteration of main_loop() to permit event handlers some time to
interact with the server. Setting this to 0 will provide the fastest
response to events, but will result in event handlers having to fight with
event polling for access to the server.

	
clear()[source]

	Forget all pending events that have not yet been retrieved with
poll().

This method is used to clear the list of events that have occurred
since the last call to poll() without retrieving them. This is
useful for ensuring that events subsequently retrieved definitely
occurred after the call to clear().

	
main_loop()[source]

	Starts the event polling loop when using the decorator style of event
handling (see on_block_hit()).

This method will not return, so be sure that you have specified all
your event handlers before calling it. The event loop can only be
broken by an unhandled exception, or by closing the world’s connection
(in the latter case the resulting ConnectionClosed
exception will be suppressed as it is assumed that you want to end the
script cleanly).

	
on_block_hit(thread=False, multi=True, pos=None, face=None)[source]

	Decorator for registering a function as an event handler.

This decorator is used to mark a function as an event handler which
will be called for any events indicating a block has been hit while
main_loop() is executing. The function will be called with the
corresponding BlockHitEvent as the only argument.

The pos attribute can be used to specify a vector or sequence of
vectors (including a vector_range); in this
case the event handler will only be called for block hits on matching
vectors.

The face attribute can be used to specify a face or sequence of
faces for which the handler will be called.

For example, to specify that one handler should be called for hits
on the top of any blocks, and another should be called only for hits
on any face of block at the origin one could use the following code:

from picraft import World, Vector

world = World()

@world.events.on_block_hit(pos=Vector(0, 0, 0))
def origin_hit(event):
 world.say('You hit the block at the origin')

@world.events.on_block_hit(face="y+")
def top_hit(event):
 world.say('You hit the top of a block at %d,%d,%d' % event.pos)

world.events.main_loop()

The thread parameter (which defaults to False) can be used to
specify that the handler should be executed in its own background
thread, in parallel with other handlers.

Finally, the multi parameter (which only applies when thread is
True) specifies whether multi-threaded handlers should be allowed
to execute in parallel. When True (the default), threaded handlers
execute as many times as activated in parallel. When False, a
single instance of a threaded handler is allowed to execute at any
given time; simultaneous activations are ignored (but not queued, as
with unthreaded handlers).

	
on_idle(thread=False, multi=True)[source]

	Decorator for registering a function as an idle handler.

This decorator is used to mark a function as an event handler which
will be called when no other event handlers have been called in an
iteration of main_loop(). The function will be called with the
corresponding IdleEvent as the only argument.

Note that idle events will only be generated if include_idle
is set to True.

	
on_player_pos(thread=False, multi=True, old_pos=None, new_pos=None)[source]

	Decorator for registering a function as a position change handler.

This decorator is used to mark a function as an event handler which
will be called for any events indicating that a player’s position has
changed while main_loop() is executing. The function will be
called with the corresponding PlayerPosEvent as the only
argument.

The old_pos and new_pos attributes can be used to specify vectors
or sequences of vectors (including a
vector_range) that the player position events
must match in order to activate the associated handler. For example, to
fire a handler every time any player enters or walks over blocks within
(-10, 0, -10) to (10, 0, 10):

from picraft import World, Vector, vector_range

world = World()
world.events.track_players = world.players

from_pos = Vector(-10, 0, -10)
to_pos = Vector(10, 0, 10)
@world.events.on_player_pos(new_pos=vector_range(from_pos, to_pos + 1))
def in_box(event):
 world.say('Player %d stepped in the box' % event.player.player_id)

world.events.main_loop()

Various effects can be achieved by combining old_pos and new_pos
filters. For example, one could detect when a player crosses a boundary
in a particular direction, or decide when a player enters or leaves a
particular area.

Note that only players specified in track_players will generate
player position events.

	
poll()[source]

	Return a list of all events that have occurred since the last call to
poll().

For example:

>>> w = World()
>>> w.events.track_players = w.players
>>> w.events.include_idle = True
>>> w.events.poll()
[<PlayerPosEvent old_pos=0.2,1.0,0.7 new_pos=0.3,1.0,0.7 player=1>,
 <BlockHitEvent pos=1,1,1 face="x+" player=1>,
 <BlockHitEvent pos=1,1,1 face="x+" player=1>]
>>> w.events.poll()
[<IdleEvent>]

	
process()[source]

	Poll the server for events and call any relevant event handlers
registered with on_block_hit().

This method is called repeatedly the event handler loop implemented by
main_loop(); developers should only call this method when their
(presumably non-threaded) event handler is engaged in a long operation
and they wish to permit events to be processed in the meantime.

	
include_idle

	If True, generate an idle event when no other events would be
generated by poll(). This attribute defaults to False.

	
poll_gap

	The length of time (in seconds) to pause during main_loop().

This property specifies the length of time to wait at the end of each
iteration of main_loop(). By default this is 0.1 seconds.

The purpose of the pause is to give event handlers executing in the
background time to communicate with the Minecraft server. Setting this
to 0.0 will result in faster response to events, but also starves
threaded event handlers of time to communicate with the server,
resulting in “choppy” performance.

	
track_players

	The set of player ids for which movement should be tracked.

By default the poll() method will not produce player position
events (PlayerPosEvent). Producing these events requires extra
interactions with the Minecraft server (one for each player tracked)
which slow down response to block hit events.

If you wish to track player positions, set this attribute to the set of
player ids you wish to track and their positions will be stored. The
next time poll() is called it will query the positions for all
specified players and fire player position events if they have changed.

Given that the players attribute
represents a dictionary mapping player ids to players, if you wish to
track all players you can simply do:

>>> world.events.track_players = world.players

12.2. BlockHitEvent

	
class picraft.events.BlockHitEvent(pos, face, player)[source]

	Event representing a block being hit by a player.

This tuple derivative represents the event resulting from a player striking
a block with their sword in the Minecraft world. Users will not normally
need to construct instances of this class, rather they are constructed and
returned by calls to poll().

Note

Please note that the block hit event only registers when the player
right clicks with the sword. For some reason, left clicks do not
count.

	
pos

	A Vector indicating the position of the block
which was struck.

	
face

	A string indicating which side of the block was struck. This can be one
of six values: ‘x+’, ‘x-‘, ‘y+’, ‘y-‘, ‘z+’, or ‘z-‘. The value
indicates the axis, and direction along that axis, that the side faces:

[image: _images/block_faces.png]

	
player

	A Player instance representing the player that
hit the block.

12.3. PlayerPosEvent

	
class picraft.events.PlayerPosEvent(old_pos, new_pos, player)[source]

	Event representing a player moving.

This tuple derivative represents the event resulting from a player moving
within the Minecraft world. Users will not normally need to construct
instances of this class, rather they are constructed and returned by calls
to poll().

	
old_pos

	A Vector indicating the location of the player
prior to this event. The location includes decimal places (it is not
the tile-position, but the actual position).

	
new_pos

	A Vector indicating the location of the player
as of this event. The location includes decimal places (it is not
the tile-position, but the actual position).

	
player

	A Player instance representing the player that
moved.

12.4. IdleEvent

	
class picraft.events.IdleEvent[source]

	Event that fires in the event that no other events have occurred since the
last poll. This is only used if Events.include_idle is True.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

13. API - Connections and Batches

The connection module defines the Connection class, which represents
the network connection to the Minecraft server. Its primary purpose for users
of the library is to initiate batch sending via the
Connection.batch_start() method.

Note

All items in this module are available from the picraft namespace
without having to import picraft.connection directly.

The following items are defined in the module:

13.1. Connection

	
class picraft.connection.Connection(host, port, timeout=0.3, ignore_errors=False, encoding=u'ascii')[source]

	Represents the connection to the Minecraft server.

The host parameter specifies the hostname or IP address of the Minecraft
server, while port specifies the port to connect to (these typically take
the values “127.0.0.1” and 4711 respectively).

The timeout parameter specifies the maximum time that the client will
wait after sending a command before assuming that the command has succeeded
(see the The Minecraft network protocol section for more information). If ignore_errors
is True, act like the official reference implementation and ignore all
errors for commands which do not return data.

Users will rarely need to construct a Connection object
themselves. An instance of this class is constructed by
World to handle communication with the game server
(connection).

The most important aspect of this class is its ability to “batch”
transmissions together. Typically, the send() method is used to
transmit requests to the Minecraft server. When this is called normally
(outside of a batch), it immediately transmits the requested data. However,
if batch_start() has been called first, the data is not sent
immediately, but merely appended to the batch. The batch_send()
method can then be used to transmit all requests simultaneously (or
alternatively, batch_forget() can be used to discard the list). See
the docs of these methods for more information.

	
close()[source]

	Closes the connection.

This method can be used to close down the connection to the game
server. After this method is called, any further requests will raise a
ConnectionClosed exception.

	
send(buf)[source]

	Transmits the contents of buf to the connected server.

If no batch has been initiated (with batch_start()), this method
immediately communicates the contents of buf to the connected
Minecraft server. If buf is a unicode string, the method attempts
to encode the content in a byte-encoding prior to transmission (the
encoding used is the encoding attribute of the class which
defaults to “ascii”).

If a batch has been initiated, the contents of buf are appended to
the latest batch that was started (batches can be nested; see
batch_start() for more information).

	
transact(buf)[source]

	Transmits the contents of buf, and returns the reply string.

This method immediately communicates the contents of buf to the
connected server, then reads a line of data in reply and returns it.

Note

This method ignores the batch mechanism entirely as transmission
is required in order to obtain the response. As this method
is typically used to implement “getters”, this is not usually an
issue but it is worth bearing in mind.

	
batch_start()[source]

	Starts a new batch transmission.

When called, this method starts a new batch transmission. All
subsequent calls to send() will append data to the batch buffer
instead of actually sending the data.

To terminate the batch transmission, call batch_send() or
batch_forget(). If a batch has already been started, a
BatchStarted exception is raised.

Note

This method can be used as a context manager
(the-with-statement) which will cause a batch to be started,
and implicitly terminated with batch_send() or
batch_forget() depending on whether an exception is raised
within the enclosed block.

	
batch_send()[source]

	Sends the batch transmission.

This method is called after batch_start() and send() have
been used to build up a list of batch commands. All the commands will
be combined and sent to the server as a single transmission.

If no batch is currently in progress, a
BatchNotStarted exception will be raised.

	
batch_forget()[source]

	Terminates a batch transmission without sending anything.

This method is called after batch_start() and send()
have been used to build up a list of batch commands. All commands in
the batch will be cleared without sending anything to the server.

If no batch is currently in progress, a
BatchNotStarted exception will be raised.

	
ignore_errors

	If False (the default), use the timeout to determine when
responses have been successful. If True assume any response without
an expected reply is successful (this is the behaviour of the reference
implementation; it is faster but less “safe”).

	
timeout

	The length of time in seconds to wait for a response (positive or
negative) from the server when ignore_errors is False.

	
encoding

	The encoding that will be used for messages transmitted to, and
received from the server. Defaults to 'ascii'.

	
server_version

	Returns an object (currently just a string) representing the version
of the Minecraft server we’re talking to. Presently this is just
'minecraft-pi' or 'raspberry-juice'.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

14. API - Players

The player module defines the Players class, which is available via
the players attribute, the Player class,
which represents an arbitrary player in the world, and the HostPlayer
class which represents the player on the host machine (accessible via the
player attribute).

Note

All items in this module are available from the picraft namespace
without having to import picraft.player directly.

The following items are defined in the module:

14.1. Player

	
class picraft.player.Player(connection, player_id)[source]

	Represents a player within the game world.

Players are uniquely identified by their player_id. Instances of this
class are available from the players mapping.
It provides properties to query and manipulate the position and settings of
the player.

	
direction

	The direction the player is facing as a unit vector.

This property can be queried to retrieve a unit
Vector pointing in the direction of the
player’s view.

Warning

Player direction is only supported on Raspberry Juice.

	
heading

	The direction the player is facing in clockwise degrees from South.

This property can be queried to determine the direction that the player
is facing. The value is returned as a floating-point number of degrees
from North (i.e. 180 is North, 270 is East, 0 is South, and 90 is
West).

Warning

Player heading is only supported on Raspberry Juice.

	
pitch

	The elevation of the player’s view in degrees from the horizontal.

This property can be queried to determine whether the player is looking
up (values from 0 to -90) or down (values from 0 down to 90). The value
is returned as floating-point number of degrees from the horizontal.

Warning

Player pitch is only supported on Raspberry Juice.

	
player_id

	Returns the integer ID of the player on the server.

	
pos

	The precise position of the player within the world.

This property returns the position of the selected player within the
Minecraft world, as a Vector instance. This is the precise
position of the player including decimal places (representing portions
of a tile). You can assign to this property to reposition the player.

	
tile_pos

	The position of the player within the world to the nearest block.

This property returns the position of the selected player in the
Minecraft world to the nearest block, as a Vector instance.
You can assign to this property to reposition the player.

14.2. HostPlayer

	
class picraft.player.HostPlayer(connection)[source]

	Represents the host player within the game world.

An instance of this class is accessible as the Game.player
attribute. It provides properties to query and manipulate the position
and settings of the host player.

	
autojump

	Write-only property which sets whether the host player autojumps.

When this property is set to True (which is the default), the host
player will automatically jump onto blocks when it runs into them
(unless the blocks are too high to jump onto).

Warning

Player settings are only supported on Minecraft Pi edition.

Note

Unfortunately, the underlying protocol provides no means of reading
a world setting, so this property is write-only (attempting to
query it will result in an AttributeError [http://docs.python.org/3.2/library/exceptions.html#AttributeError] being raised).

	
direction

	The direction the player is facing as a unit vector.

This property can be queried to retrieve a unit
Vector pointing in the direction of the
player’s view.

Warning

Player direction is only supported on Raspberry Juice.

	
heading

	The direction the player is facing in clockwise degrees from South.

This property can be queried to determine the direction that the player
is facing. The value is returned as a floating-point number of degrees
from North (i.e. 180 is North, 270 is East, 0 is South, and 90 is
West).

Warning

Player heading is only supported on Raspberry Juice.

	
pitch

	The elevation of the player’s view in degrees from the horizontal.

This property can be queried to determine whether the player is looking
up (values from 0 to -90) or down (values from 0 down to 90). The value
is returned as floating-point number of degrees from the horizontal.

Warning

Player pitch is only supported on Raspberry Juice.

	
pos

	The precise position of the player within the world.

This property returns the position of the selected player within the
Minecraft world, as a Vector instance. This is the precise
position of the player including decimal places (representing portions
of a tile). You can assign to this property to reposition the player.

	
tile_pos

	The position of the player within the world to the nearest block.

This property returns the position of the selected player in the
Minecraft world to the nearest block, as a Vector instance.
You can assign to this property to reposition the player.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

15. API - Exceptions

The exc module defines the various exception classes specific to picraft.

Note

All items in this module are available from the picraft namespace
without having to import picraft.exc directly.

The following items are defined in the module:

15.1. Exceptions

	
exception picraft.exc.Error[source]

	Base class for all PiCraft exceptions

	
exception picraft.exc.NotSupported[source]

	Exception raised for unimplemented methods / properties

	
exception picraft.exc.ConnectionError[source]

	Base class for PiCraft errors relating to network communications

	
exception picraft.exc.ConnectionClosed[source]

	Exception raised when an operation is attempted against a closed connection

	
exception picraft.exc.CommandError[source]

	Exception raised when a network command fails

	
exception picraft.exc.NoResponse[source]

	Exception raised when a network command expects a response but gets none

	
exception picraft.exc.BatchStarted[source]

	Exception raised when a batch is started before a prior one is complete

	
exception picraft.exc.BatchNotStarted[source]

	Exception raised when a batch is terminated when none has been started

	
exception picraft.exc.EmptySliceWarning[source]

	Warning raised when a zero-length vector slice is passed to blocks

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

16. The Minecraft network protocol

This chapter contains details of the network protocol used by the library to
communicate with the Minecraft game. Although this is primarily intended to
inform future developers of this (or other) libraries, it may prove interesting
reading for users to understand some of the decisions in the design of the
library.

16.1. Specification

16.1.1. Requirements

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this section are to
be interpreted as defined in RFC 2119 [https://tools.ietf.org/html/rfc2119].

16.1.2. Overall Operation

The Minecraft protocol is a text-based “interactive” line oriented protocol.
All communication is initiated by the client and consists of single lines of
text which MAY generate a single line of text in response. Lines MUST terminate
with ASCII character 10 (line feed, usually shortened to LF or \n).

Protocol implementations MUST use the ASCII encoding (non-ASCII characters are
not ignored, or an error, but their effect is undefined).

A Minecraft network session begins by connecting a TCP stream socket to the
server, which defaults to listening on port 4711. Protocol implementations
SHOULD disable Nagle’s algorithm (TCP_NODELAY) on the socket as the protocol is
effectively interactive and relies on many small packets. No “hello” message is
transmitted by the client, and no “banner” message is sent by the server. A
Minecraft session ends simply by disconnecting the socket.

Commands and responses MUST consist of a single line. The typical form of a
command, described in the augmented Backus-Naur Form (ABNF) defined by RFC
5234 [https://tools.ietf.org/html/rfc5234] is as follows:

command = command-name "(" [option *("," option)] ")" LF

command-name = 1*ALPHA "." 1*ALPHA ["." 1*ALPHA]
option = int-val / float-val / str-val

bool-val = "0" / "1"
int-val = 1*DIGIT
float-val = 1*DIGIT ["." 1*DIGIT]
str-val = *CHAR

Note

Note that the ABNF specified by RFC 5234 [https://tools.ietf.org/html/rfc5234] does not provide for implicit
specification of linear white space. In other words, unless whitespace is
explicitly specified in ABNF constructions, it is not permitted by the
specification.

The typical form of a response (if one is given) is as follows:

response = (success-response / fail-response) LF

success-response = int-vector / float-vector
fail-response = "Fail"

int-vector = int-val "," int-val "," int-val
float-vector = float-val "," float-val "," float-val

The general character classes utilised in the ABNF definitions above are as
follows:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
CHAR = %x01-09 / %x0B-FF ; any character except LF
SP = %x20 ; space
LF = %x0A ; line-feed

16.1.3. Client Notes

Successful commands either make no response, or provide a single line of data
as a response. Unsuccessful commands either make no response, or provide a
single line response containing the string “Fail” (without the quotation
marks). The lack of positive (and sometimes negative) acknowledgements provides
a conundrum for client implementations: how long to wait before deciding that a
command has succeeded? If “Fail” is returned, the client can immediately
conclude the preceding command failed. However, if nothing is returned, the
client must decide whether the command succeeded, or whether the network or
server is simply being slow in responding.

The longer the client waits, the more likely it is to correctly report failed
operations (in the case of slow systems). However, the longer the wait, the
slower the response time (and performance) of the client.

The official reference implementation simply ignores errors in commands that
produce no response (providing the best performance, but the least safety).
The picraft implementation provides a configurable timeout (including the
ability to ignore errors like the reference implementation).

Clients MAY either ignore errors (as the official API does) or implement some
form or timeout to determine when operations are successful (as in this API by
default).

16.1.4. Specific Commands

The following sections define the specific commands supported by the protocol.

16.1.5. camera.mode.setFixed

Syntax:

camera-fixed-command = "camera.mode.setFixed()" LF

The camera.mode.setFixed command fixes the camera’s position at the current
location. The camera’s location can subsequently be updated with the
camera.setPos command but will not move otherwise. The camera’s orientation
is fixed facing down (parallel to a vector along Y=-1).

16.1.6. camera.mode.setFollow

Syntax:

camera-follow-command = "camera.mode.setFollow(" [int] ")" LF

The camera.mode.setFollow command fixes the camera’s position vertically
above the player with the specified ID (if the optional integer is specified)
or above the host player (if no integer is given). The camera’s position will
follow the specified player’s position, but the orientation will be fixed
facing down (parallel to a vector along Y=-1).

16.1.7. camera.mode.setNormal

Syntax:

camera-normal-command = "camera.mode.setNormal(" [int] ")" LF

The camera.mode.setNormal command aligns the camera’s position with the
“head” of the player with the specified ID (if the optional integer is
specified) or the host player (if no integer is given). The camera’s position
and orientation will subsequently track the player’s head.

16.1.8. camera.setPos

Syntax:

camera-set-pos-command = "camera.mode.setPos(" float-vector ")" LF

When the camera position has been fixed with camera.mode.setFixed(), this
command can be used to alter the position of the camera. The orientation of
the camera will, however, remain fixed (parallel to a vector along Y=-1).

16.1.9. chat.post

Syntax:

world-chat-command = "chat.post(" str-val ")" LF

The chat.post command causes the server to echo the message provided as
the only parameter to the in-game chat console. The message MUST NOT contain
the LF character, but other control characters are (currently) permitted.

16.1.10. entity.getPos

Syntax:

entity-get-pos-command = "entity.getPos(" int-val ")" LF
entity-get-pos-response = player-get-pos-response

The entity.getPos command performs the same action as the
player.getPos command for the player with the ID given by the
sole parameter; refer to player.getPos for full details.

16.1.11. entity.getTile

Syntax:

entity-get-tile-command = "entity.getTile(" int-val ")" LF
entity-get-tile-command = player-get-tile-response

The entity.getTile command performs the same action as the
player.getTile command for the player with the ID given by the
sole parameter; refer to player.getTile for full details.

16.1.12. entity.setPos

Syntax:

entity-set-pos-command = "entity.setPos(" int-val "," float-vector ")" LF

The entity.setPos command performs the same action as the
player.setPos command for the player with the ID given by the
first parameter. The second parameter is equivalent to the first parameter
for player.setPos; refer to that command for full details.

16.1.13. entity.setTile

Syntax:

entity-set-tile-command = "entity.setTile(" int-val "," int-vector ")" LF

The entity.setTile command performs the same action as the
player.setTile command for the player with the ID given by the first
parameter. The second parameter is equivalent to the first parameter for
player.setTile; refer to that command for full details.

16.1.14. player.getPos

Syntax:

player-get-pos-command = "player.getPos()" LF
player-get-pos-response = float-vector LF

The player.getPos command returns the current location of the host player
in the game world as an X, Y, Z vector of floating point values. The
coordinates 0, 0, 0 represent the spawn point within the world.

16.1.15. player.getTile

Syntax:

player-get-tile-command = "player.getTile()" LF
player-get-tile-response = int-vector LF

The player.getTile command returns the current location of the host player
in the game world, to the nearest block coordinates, as an X, Y, Z vector of
integer values.

16.1.16. player.setPos

Syntax:

player-set-pos-command = "player.setPos(" float-vector ")" LF

The player.setPos command teleports the host player to the specified
location in the game world. The floating point values given are the X, Y, and Z
coordinates of the player’s new position respectively.

16.1.17. player.setTile

Syntax:

player-set-tile-command = "player.setTile(" int-vector ")" LF

The player.setTile command teleports the host player to the specified
location in the game world. The integer values given are the X, Y, and Z
coordinates of the player’s new position respectively.

16.1.18. player.setting

Syntax:

player-setting-command = "player.setting(" str-val "," bool-val ")" LF

The player.setting command alters a property of the host player. The
property to alter is given as the str-val (note: this is unquoted) and the
new value is given as the bool-val (where 0 means “off” and 1 means “on”).
Valid properties are:

	autojump - when enabled, causes the player to automatically jump onto
blocks that they run into.

16.1.19. world.checkpoint.restore

Syntax:

world-restore-command = "world.checkpoint.restore()" LF

The world.checkpoint.restore command restores the state of the world (i.e.
the id and data of all blocks in the world) from a prior saved state (created
by the world.checkpoint.save command). If no prior state exists, nothing
is restored but no error is reported. Restoring a state does not wipe it; thus
a saved state can be restored multiple times.

16.1.20. world.checkpoint.save

Syntax:

world-save-command = "world.checkpoint.save()" LF

The world.checkpoint.save command can be used to save the current state
of the world (i.e. the id and data of all blocks in the world, but not the
position or orientation of player entities). Only one state is stored at any
given time; any save overwrites any existing state.

The state of the world can be restored with a subsequent
world.checkpoint.restore command.

16.1.21. world.getBlock

Syntax:

world-get-block-command = "world.getBlock(" int-vector ")" LF
world-get-block-response = int-val LF

The world.getBlock command can be used to retrieve the current type of a
block within the world. The result consists of an integer representing the
block type.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for a list of block types.

16.1.22. world.getBlockWithData

Syntax:

world-get-blockdata-command = "world.getBlockWithData(" int-vector ")" LF
world-get-blockdata-response = int-val "," int-val LF

The world.getBlockWithData command can be used to retrieve the current type
and associated data of a block within the world. The result consists of two
comma-separated integers which represent the block type and the associated data
respectively.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for further information.

16.1.23. world.getHeight

Syntax:

world-get-height-command = "world.getHeight(" int-val "," int-val ")" LF
world-get-height-response = int-val LF

In response to the world.getHeight command the server calculates the Y
coordinate of the first non-air block for the given X and Z coordinates (first
and second parameter respectively) from the top of the world, and returns this
as the result.

16.1.24. world.getPlayerIds

Syntax:

world-enum-players-command = "world.getPlayerIds()" LF
world-enum-players-response = [int-val *("|" int-val) LF]

The world.getPlayerIds command causes the server to a return a pipe (|)
separated list of the integer player IDs of all players currently connected
to the server. These player IDs can subsequently be used in the commands
qualified with entity.

16.1.25. world.setBlock

Syntax:

world-set-block-command = "world.setBlock(" int-vector "," int-val ["," int-val] ")" LF

The world.setBlock command can be used to alter the type and associated
data of a block within the world. The first three integer values provide the X,
Y, and Z coordinates of the block to alter. The fourth integer value provides
the new type of the block. The optional fifth integer value provides the
associated data of the block.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for further information.

16.1.26. world.setBlocks

Syntax:

world-set-blocks-command = "world.setBlock(" int-vector "," int-vector "," int-val ["," int-val] ")" LF

The world.setBlocks command can be used to alter the type and associated
data of a range of blocks within the world. The first three integer values
provide the X, Y, and Z coordinates of the start of the range to alter. The
next three integer values provide the X, Y, and Z coordinates of the end of the
range to alter.

The seventh integer value provides the new type of the block. The optional
eighth integer value provides the associated data of the block.

See Data Values (Pocket Edition) [http://minecraft.gamepedia.com/Data_values_%28Pocket_Edition%29] for further information.

16.1.27. world.setting

Syntax:

world-setting-command = "world.setting(" str-val "," bool-val ")" LF

The world.setting command is used to alter global aspects of the world.
The setting to be altered is named by the first parameter (the setting name
MUST NOT be surrounded by quotation marks), while the boolean value (the only
type currently supported) is specified as the second parameter. The settings
supported by the Minecraft Pi engine are:

	world_immutable - This controls whether or the player can alter the world
(by placing or destroying blocks)

	nametags_visible - This controls whether the nametags of other players
are visible

16.2. Critique

The Minecraft protocol is a text-based “interactive” line oriented protocol.
By this, I mean that a single connection is opened from the client to the
server and all commands and responses are transmitted over this connection. The
completion of a command does not close the connection.

Despite text protocols being relatively inefficient compared to binary
(non-human readable) protocols, a text-based protocol is an excellent choice in
this case: the protocol isn’t performance critical and besides, this makes it
extremely easy to experiment with and debug using nothing more than a standard
telnet client.

Unfortunately, this is where the good news ends. The following is a telnet
session in which I experimented with various possibilities to see how “liberal”
the server was in interpreting commands:

chat.post(foo)
Chat.post(foo)
chat.Post(foo)
chat.post (foo)
chat.post(foo))
chat.post(foo,bar)
chat.post(foo) bar baz
chat.post foo
Fail

	The first attempt (chat.post(foo)) succeeds and prints “foo” in the chat
console within the game.

	The second, third and fourth attempts (Chat.post(foo),
chat.Post(foo), and chat.post (foo)) all fail silently.

	The fifth attempt (chat.post(foo))) succeeds and prints “foo)” in the
chat console within the game (this immediately raised my suspicions that the
server is simply using regex matching instead of a proper parser).

	The sixth attempt (chat.post(foo,bar)) succeeds, and prints “foo,bar” in
the chat console.

	The seventh attempt (chat.post(foo) bar baz) succeeds, and prints “foo”
in the console.

	The eighth and final attempt (chat.post foo) also fails and actually
elicits a “Fail” response from the server.

What can we conclude from the above? If one were being generous, we might
conclude that the ignoring of trailing junk (bar baz in the final example)
is an effort at conforming with Postel’s Law [https://en.wikipedia.org/wiki/Robustness_principle]. However, the fact that command
name matching is done case insensitively, and that spaces leading the
parenthesized arguments cause failure would indicate it’s more likely an
oversight in the (probably rather crude) command parser.

A more serious issue is that in certain cases positive acknowledgement, and
even negative acknowledgement, are lacking from the protocol. This is a major
oversight as it means a client has no reliable means of deciding when a command
has succeeded or failed:

	If the client receives “Fail” in response to a command, it can immediately
conclude the command has failed (and presumably raise some sort of exception
in response).

	If nothing is received, the command may have succeeded.

	Alternatively, if nothing is received, the command may have failed (see
the silent failures above).

	Finally, if nothing is received, the server or intervening network may simply
be running slowly and the client should wait a bit longer for a response.

So, after sending a command a client needs to wait a certain period of time
before deciding that a command has succeeded or failed. How long? This is
impossible to decide given that it depends on the state of the remote system
and intervening network.

The longer a client waits, the more likely it is to correctly notice failures
in the event of slow systems/networks. However, the longer a client waits the
longer it will be before another command can be sent (given that responses are
not tied to commands by something like a sequence number), resulting in poorer
performance.

The official reference implementation of the client (mcpi) doesn’t wait at all
and simply assumes that all commands which don’t normally provide a response
succeed. The picraft implementation provides a configurable timeout, or the
option to ignore errors like the reference implementation (the default is to
wait 0.2s in order to err on the side of safety).

What happens with unknown commands? Let’s try another telnet session to find
out:

foo
Fail
foo()

It appears that anything without parentheses is rejected as invalid, but
anything with parentheses is accepted (even though it does nothing ... is that
an error? I’ve no idea!).

What happens when we play with commands which accept numbers?

player.setPos(0.5,60,-60)
player.setPos(0.5,60.999999999999999999999999999999999999,-60)
player.setPos(0.5,0x3c,-60)
player.setPos(5e-1,60,-60)
player.setPos(0.5,inf,-60)
player.setPos(0.5,NaN,nan)
player.setPos(0.5,+60,-60)
player.setPos(0.5,--60,-60)
Fail
player.setPos(0.5,60,-60)
player.setPos(0.5 ,60,-60)
Fail
player.setPos(0.5,60,-60
player.setPos(0.5,60,-60 foo
player.setPos(0.5 foo,60,-60)
Fail

In each case above, if nothing was returned, the command succeeded (albeit with
interesting results in the case of NaN and inf values). So, we can conclude
the following:

	The server doesn’t seem to care if we use floating point literals, decimal
integer literals, hex literals, exponent format, or silly amounts of
decimals. This suggests to me it’s just splitting the options on ”,” and
throwing each resulting string at some generic str2num routine.

	Backing up the assumption that some generic str2num routine is being used,
the server also accepts “NaN” and “inf” values as numbers (albeit with
silly results).

	Leading spaces in options are fine, but trailing ones result in failure.

	Unless it’s the last option in which case anything goes.

	Including the trailing parenthesis, apparently.

As we’ve seen above, the error reporting provided by the protocol is beyond
minimal. The most we ever get is the message “Fail” which doesn’t tell us
whether it’s a client side or server side error, a syntax error, an unknown
command, or anything else. In several cases, we don’t even get “Fail” despite
nothing occurring on the server.

In conclusion, this is not a well thought out protocol, nor a terribly well
implemented server.

16.2.1. A plea to the developers

I would dearly like to see this situation improved and be able to remove this
section from the docs! To that end, I would be more than happy to discuss
(backwards compatible) improvements in the protocol with the developers. It
shouldn’t be terribly hard to come up with something similarly structured
(text-based, line-oriented), which doesn’t break existing clients, but permits
future clients to operate more reliably without sacrificing (much) performance.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Picraft 0.4 documentation

17. Change log

17.1. Release 0.4 (2015-07-19)

Release 0.4 adds plenty of new features:

	The events system has been expanded considerably to include an event-driven
programming paradigm (decorate functions to tell picraft when to call them,
e.g. in response to player movement or block hits). This includes the ability
to run event handlers in parallel with automatic threading

	Add support for circle drawing through an arbitrary plane. I’m still not
happy with the implementation, and may revise it in future editions, but
I am happy with the API so it’s worth releasing for now (#7_)

	Add Raspbian packaging; we’ve probably got to the point where I need to start
making guarantees about backward compatibililty in which case it’s probably
time to make this more generally accessible by including deb packaging
(#8_)

	Lots of doc revisions including a new vectors chapter, more recipes, and so
on!

17.2. Release 0.3 (2015-06-21)

Release 0.3 adds several new features:

	Add support for querying a range of blocks with one transaction on the
Raspberry Juice server (#1 [https://github.com/waveform80/picraft/issues/1])

	Add support for rotation of vectors about an arbitrary line (#6 [https://github.com/waveform80/picraft/issues/6])

	Add bitwise operations and rounding of vectors

	Lots of documentation updates (fixes to links, new recipes, events documented
properly, etc.)

17.3. Release 0.2 (2015-06-08)

Release 0.2 is largely a quick bug fix release to deal with a particularly
stupid bug in 0.1 (but what are alphas for?). It also adds a couple of minor
features:

	Fix a stupid error which caused block.data and block.color (which
make up the block database) to be excluded from the PyPI build (#3 [https://github.com/waveform80/picraft/issues/3])

	Fix being able to set empty block ranges (#2 [https://github.com/waveform80/picraft/issues/2])

	Fix being able to set block ranges with non-unit steps (#4 [https://github.com/waveform80/picraft/issues/4])

	Preliminary implementation of getBlocks support (#1 [https://github.com/waveform80/picraft/issues/1])

17.4. Release 0.1 (2015-06-07)

Initial release. This is an alpha version of the library and the API is subject
to change up until the 1.0 release at which point API stability will be
enforced.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Picraft 0.4 documentation

18. License

Copyright 2013-2015 Dave Jones

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Picraft 0.4 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 picraft	

 	
 	
 picraft.block	

 	
 	
 picraft.connection	

 	
 	
 picraft.events	

 	
 	
 picraft.exc	

 	
 	
 picraft.player	

 	
 	
 picraft.vector	

 	
 	
 picraft.world	

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Picraft 0.4 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	

 	angle_between() (picraft.vector.Vector method)

 	

 	autojump (picraft.player.HostPlayer attribute)

B

 	

 	batch_forget() (picraft.connection.Connection method)

 	batch_send() (picraft.connection.Connection method)

 	batch_start() (picraft.connection.Connection method)

 	BatchNotStarted

 	BatchStarted

 	

 	Block (class in picraft.block)

 	BLOCK_COLORS (in module picraft.block)

 	BlockHitEvent (class in picraft.events)

 	blocks (picraft.world.World attribute)

C

 	

 	Camera (class in picraft.world)

 	camera (picraft.world.World attribute)

 	ceil() (picraft.vector.Vector method)

 	Checkpoint (class in picraft.world)

 	checkpoint (picraft.world.World attribute)

 	clear() (picraft.events.Events method)

 	close() (picraft.connection.Connection method)

 	

 	CommandError

 	Connection (class in picraft.connection)

 	connection (picraft.world.World attribute)

 	ConnectionClosed

 	ConnectionError

 	count() (picraft.vector.vector_range method)

 	cross() (picraft.vector.Vector method)

D

 	

 	data (picraft.block.Block attribute)

 	description (picraft.block.Block attribute)

 	direction (picraft.player.HostPlayer attribute)

 	

 	(picraft.player.Player attribute)

 	

 	distance_to() (picraft.vector.Vector method)

 	dot() (picraft.vector.Vector method)

E

 	

 	EmptySliceWarning

 	encoding (picraft.connection.Connection attribute)

 	Error

 	

 	Events (class in picraft.events)

 	events (picraft.world.World attribute)

F

 	

 	face (picraft.events.BlockHitEvent attribute)

 	first_person() (picraft.world.Camera method)

 	floor() (picraft.vector.Vector method)

 	

 	from_color() (picraft.block.Block class method)

 	from_id() (picraft.block.Block class method)

 	from_name() (picraft.block.Block class method)

H

 	

 	heading (picraft.player.HostPlayer attribute)

 	

 	(picraft.player.Player attribute)

 	height (picraft.world.World attribute)

 	

 	HostPlayer (class in picraft.player)

I

 	

 	id (picraft.block.Block attribute)

 	IdleEvent (class in picraft.events)

 	ignore_errors (picraft.connection.Connection attribute)

 	

 	immutable (picraft.world.World attribute)

 	include_idle (picraft.events.Events attribute)

 	index() (picraft.vector.vector_range method)

L

 	

 	line() (in module picraft.vector)

 	

 	lines() (in module picraft.vector)

M

 	

 	magnitude (picraft.vector.Vector attribute)

 	

 	main_loop() (picraft.events.Events method)

N

 	

 	name (picraft.block.Block attribute)

 	nametags_visible (picraft.world.World attribute)

 	new_pos (picraft.events.PlayerPosEvent attribute)

 	

 	NoResponse

 	NotSupported

O

 	

 	old_pos (picraft.events.PlayerPosEvent attribute)

 	on_block_hit() (picraft.events.Events method)

 	

 	on_idle() (picraft.events.Events method)

 	on_player_pos() (picraft.events.Events method)

P

 	

 	pi (picraft.block.Block attribute)

 	picraft (module)

 	picraft.block (module)

 	picraft.connection (module)

 	picraft.events (module)

 	picraft.exc (module)

 	picraft.player (module)

 	picraft.vector (module)

 	picraft.world (module)

 	pitch (picraft.player.HostPlayer attribute)

 	

 	(picraft.player.Player attribute)

 	Player (class in picraft.player)

 	

 	player (picraft.events.BlockHitEvent attribute)

 	

 	(picraft.events.PlayerPosEvent attribute)

 	(picraft.world.World attribute)

 	player_id (picraft.player.Player attribute)

 	PlayerPosEvent (class in picraft.events)

 	players (picraft.world.World attribute)

 	pocket (picraft.block.Block attribute)

 	poll() (picraft.events.Events method)

 	poll_gap (picraft.events.Events attribute)

 	pos (picraft.events.BlockHitEvent attribute)

 	

 	(picraft.player.HostPlayer attribute)

 	(picraft.player.Player attribute)

 	(picraft.world.Camera attribute)

 	process() (picraft.events.Events method)

 	project() (picraft.vector.Vector method)

R

 	

 	replace() (picraft.vector.Vector method)

 	restore() (picraft.world.Checkpoint method)

 	

 	rotate() (picraft.vector.Vector method)

S

 	

 	save() (picraft.world.Checkpoint method)

 	say() (picraft.world.World method)

 	

 	send() (picraft.connection.Connection method)

 	server_version (picraft.connection.Connection attribute)

T

 	

 	third_person() (picraft.world.Camera method)

 	tile_pos (picraft.player.HostPlayer attribute)

 	

 	(picraft.player.Player attribute)

 	timeout (picraft.connection.Connection attribute)

 	

 	track_players (picraft.events.Events attribute)

 	transact() (picraft.connection.Connection method)

U

 	

 	unit (picraft.vector.Vector attribute)

V

 	

 	Vector (class in picraft.vector)

 	

 	vector_range (class in picraft.vector)

W

 	

 	World (class in picraft.world)

X

 	

 	x (picraft.vector.Vector attribute)

Y

 	

 	y (picraft.vector.Vector attribute)

Z

 	

 	z (picraft.vector.Vector attribute)

 Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_modules/picraft/exc.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.exc

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The exc module defines the various exception classes specific to picraft.

.. note::

 All items in this module are available from the :mod:`picraft` namespace
 without having to import :mod:`picraft.exc` directly.

The following items are defined in the module:

Exceptions
==========

.. autoexception:: Error

.. autoexception:: NotSupported

.. autoexception:: ConnectionError

.. autoexception:: ConnectionClosed

.. autoexception:: CommandError

.. autoexception:: NoResponse

.. autoexception:: BatchStarted

.. autoexception:: BatchNotStarted

.. autoexception:: EmptySliceWarning

"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

import socket

[docs]class Error(Exception):
 "Base class for all PiCraft exceptions"

[docs]class NotSupported(Error, NotImplementedError):
 "Exception raised for unimplemented methods / properties"

[docs]class ConnectionError(Error, socket.error):
 "Base class for PiCraft errors relating to network communications"

[docs]class ConnectionClosed(ConnectionError):
 "Exception raised when an operation is attempted against a closed connection"

[docs]class CommandError(ConnectionError):
 "Exception raised when a network command fails"

[docs]class NoResponse(ConnectionError):
 "Exception raised when a network command expects a response but gets none"

[docs]class BatchStarted(ConnectionError):
 "Exception raised when a batch is started before a prior one is complete"

[docs]class BatchNotStarted(ConnectionError):
 "Exception raised when a batch is terminated when none has been started"

[docs]class EmptySliceWarning(Warning):
 "Warning raised when a zero-length vector slice is passed to blocks"

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/picraft/block.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.block

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The block module defines the :class:`Block` class, which is used to represent
the type of a block and any associated data it may have, and the
:class:`Blocks` class which is used to implement the
:attr:`~picraft.world.World.blocks` attribute on the
:class:`~picraft.world.World` class.

.. note::

 All items in this module, except the compatibility constants, are available
 from the :mod:`picraft` namespace without having to import
 :mod:`picraft.block` directly.

The following items are defined in the module:

Block
=====

.. autoclass:: Block(id, data)

BLOCK_COLORS
============

.. data:: BLOCK_COLORS

 A set of the available colors that can be used with
 :meth:`Block.from_color`. Each color is represented as ``(red, green,
 blue)`` tuple where each component is an integer between 0 and 255.

Compatibility
=============

Finally, the module also contains compatibility values equivalent to those
in the mcpi.block module of the reference implementation. Each value represents
the type of a block with no associated data:

=================== ==================== =====================
AIR FURNACE_ACTIVE MUSHROOM_RED
BED FURNACE_INACTIVE NETHER_REACTOR_CORE
BEDROCK GLASS OBSIDIAN
BEDROCK_INVISIBLE GLASS_PANE REDSTONE_ORE
BOOKSHELF GLOWING_OBSIDIAN SAND
BRICK_BLOCK GLOWSTONE_BLOCK SANDSTONE
CACTUS GOLD_BLOCK SAPLING
CHEST GOLD_ORE SNOW
CLAY GRASS SNOW_BLOCK
COAL_ORE GRASS_TALL STAIRS_COBBLESTONE
COBBLESTONE GRAVEL STAIRS_WOOD
COBWEB ICE STONE
CRAFTING_TABLE IRON_BLOCK STONE_BRICK
DIAMOND_BLOCK IRON_ORE STONE_SLAB
DIAMOND_ORE LADDER STONE_SLAB_DOUBLE
DIRT LAPIS_LAZULI_BLOCK SUGAR_CANE
DOOR_IRON LAPIS_LAZULI_ORE TNT
DOOR_WOOD LAVA TORCH
FARMLAND LAVA_FLOWING WATER
FENCE LAVA_STATIONARY WATER_FLOWING
FENCE_GATE LEAVES WATER_STATIONARY
FIRE MELON WOOD
FLOWER_CYAN MOSS_STONE WOOD_PLANKS
FLOWER_YELLOW MUSHROOM_BROWN WOOL
=================== ==================== =====================

Use these compatibility constants by importing the block module explicitly.
For example::

 >>> from picraft import block
 >>> block.AIR
 <Block "air" id=0 data=0>
 >>> block.TNT
 <Block "tnt" id=46 data=0>
"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
try:
 from itertools import izip as zip
except ImportError:
 pass
str = type('')

import io
import warnings
from math import sqrt
from collections import namedtuple
try:
 # Py2 compat
 from itertools import izip_longest as zip_longest
except ImportError:
 from itertools import zip_longest

from pkg_resources import resource_stream
from .exc import EmptySliceWarning
from .vector import Vector, vector_range

def _read_block_data(filename_or_object):
 if isinstance(filename_or_object, str):
 stream = io.open(filename_or_object, 'rb')
 else:
 stream = filename_or_object
 for line in stream:
 line = line.decode('utf-8').strip()
 if line and not line.startswith('#'):
 id, data, pi, pocket, name, description = line.split(None, 5)
 yield int(id), int(data), bool(int(pi)), bool(int(pocket)), name, description

def _read_block_color(filename_or_object):
 if isinstance(filename_or_object, str):
 stream = io.open(filename_or_object, 'rb')
 else:
 stream = filename_or_object
 int2color = lambda n: ((n & 0xff0000) >> 16, (n & 0xff00) >> 8, n & 0xff)
 for line in stream:
 line = line.decode('utf-8').strip()
 if line and not line.startswith('#'):
 id, data, color = line.split(None, 2)
 yield int(id), int(data), int2color(int(color, 16))

_BLOCKS_DB = {
 (id, data): (pi, pocket, name, description)
 for (id, data, pi, pocket, name, description) in
 _read_block_data(resource_stream(__name__, 'block.data'))
 }

_BLOCKS_BY_ID = {
 id: (pi, pocket, name)
 for (id, data), (pi, pocket, name, description) in _BLOCKS_DB.items()
 if data == 0
 }

_BLOCKS_BY_NAME = {
 name: id
 for (id, data), (pi, pocket, name, description) in _BLOCKS_DB.items()
 if data == 0
 }

_BLOCKS_BY_COLOR = {
 color: (id, data)
 for (id, data, color) in
 _read_block_color(resource_stream(__name__, 'block.color'))
 }

BLOCK_COLORS = _BLOCKS_BY_COLOR.keys()

[docs]class Block(namedtuple('Block', ('id', 'data'))):
 """
 Represents a block within the Minecraft world.

 Blocks within the Minecraft world are represented by two values: an *id*
 which defines the type of the block (air, stone, grass, wool, etc.) and an
 optional *data* value (defaults to 0) which means different things for
 different block types (e.g. for wool it defines the color of the wool).

 Blocks are represented by this library as a :func:`namedtuple` of the *id*
 and the *data*. Calculated properties are provided to look up the
 :attr:`name` and :attr:`description` of the block from a database derived
 from the Minecraft wiki, and classmethods are defined to construct a block
 definition from an :meth:`id <from_id>` or from alternate things like a
 :meth:`name <from_name>` or an :meth:`RGB color <from_color>`::

 >>> Block.from_id(0, 0)
 <Block "air" id=0 data=0>
 >>> Block.from_id(2, 0)
 <Block "grass" id=2 data=0>
 >>> Block.from_name('stone')
 <Block "stone" id=1 data=0>
 >>> Block.from_color('#ffffff')
 <Block "wool" id=35 data=0>

 The default constructor attempts to guess which classmethod to call based
 on the following rules (in the order given):

 1. If the constructor is passed a string beginning with '#' that is 7
 characters long, it calls :meth:`from_color`

 2. If the constructor is passed a tuple containing 3 values, it calls
 :meth:`from_color`

 3. If the constructor is passed a string (not matching the case above)
 it calls :meth:`from_name`

 4. Otherwise the constructor calls :meth:`from_id` with all given
 parameters

 This means that the examples above can be more easily written::

 >>> Block(0, 0)
 <Block "air" id=0 data=0>
 >>> Block(2, 0)
 <Block "grass" id=2 data=0>
 >>> Block('stone')
 <Block "stone" id=1 data=0>
 >>> Block('#ffffff')
 <Block "wool" id=35 data=0>

 Aliases are provided for compatibility with the official reference
 implementation (AIR, GRASS, STONE, etc)::

 >>> import picraft.block
 >>> picraft.block.WATER
 <Block "flowing_water" id=8 data=0>

 .. automethod:: from_color

 .. automethod:: from_id

 .. automethod:: from_name

 .. attribute:: id

 The "id" or type of the block. Each block type in Minecraft has a
 unique value. For example, air blocks have the id 0, stone, has id 1,
 and so forth. Generally it is clearer in code to refer to a block's
 :attr:`name` but it may be quicker to use the id.

 .. attribute:: data

 Certain types of blocks have variants which are dictated by the data
 value associated with them. For example, the color of a wool block
 is determined by the *data* attribute (e.g. white is 0, red is 14,
 and so on).

 .. autoattribute:: pi

 .. autoattribute:: pocket

 .. autoattribute:: name

 .. autoattribute:: description
 """

 def __new__(cls, *args, **kwargs):
 if len(args) >= 1:
 a = args[0]
 if isinstance(a, bytes):
 a = a.decode('utf-8')
 if isinstance(a, str) and len(a) == 7 and a.startswith('#'):
 return cls.from_color(*args, **kwargs)
 elif isinstance(a, tuple) and len(a) == 3:
 return cls.from_color(*args, **kwargs)
 elif isinstance(a, str):
 return cls.from_name(*args, **kwargs)
 else:
 return cls.from_id(*args, **kwargs)
 else:
 if 'id' in kwargs:
 return cls.from_id(**kwargs)
 elif 'name' in kwargs:
 return cls.from_name(**kwargs)
 elif 'color' in kwargs:
 return cls.from_color(**kwargs)
 raise TypeError('invalid combination of arguments for Block')

 @classmethod
 def from_string(cls, s):
 id_, data = s.split(',', 1)
 return cls.from_id(int(id_), int(data))

 @classmethod
[docs] def from_id(cls, id, data=0):
 """
 Construct a :class:`Block` instance from an *id* integer. This may be
 used to construct blocks in the classic manner; by specifying a number
 representing the block's type, and optionally a data value. For
 example::

 >>> from picraft import *
 >>> Block.from_id(1)
 <Block "stone" id=1 data=0>
 >>> Block.from_id(2, 0)
 <Block "grass" id=2 data=0>

 The optional *data* parameter defaults to 0. Note that calling the
 default constructor with an integer parameter is equivalent to calling
 this method::

 >>> Block(1)
 <Block "stone" id=1" data=0>
 """
 return super(Block, cls).__new__(cls, id, data)

 @classmethod
[docs] def from_name(cls, name, data=0):
 """
 Construct a :class:`Block` instance from a *name*, as returned by the
 :attr:`name` property. This may be used to construct blocks in a more
 "friendly" way within code. For example::

 >>> from picraft import *
 >>> Block.from_name('stone')
 <Block "stone" id=1 data=0>
 >>> Block.from_name('wool', data=2)
 <Block "wool" id=35 data=2>

 The optional *data* parameter can be used to specify the data component
 of the new :class:`Block` instance; it defaults to 0. Note that calling
 the default constructor with a string that doesn't start with "#" is
 equivalent to calling this method::

 >>> Block('stone')
 <Block "stone" id=1 data=0>
 """
 if isinstance(name, bytes):
 name = name.decode('utf-8')
 try:
 id_ = _BLOCKS_BY_NAME[name]
 except KeyError:
 raise ValueError('unknown name %s' % name)
 return cls(id_, data)

 @classmethod
[docs] def from_color(cls, color, exact=False):
 """
 Construct a :class:`Block` instance from a *color* which can be
 represented as:

 * A tuple of ``(red, green, blue)`` integer byte values between 0 and
 255
 * A tuple of ``(red, green, blue)`` float values between 0.0 and 1.0
 * A string in the format '#rrggbb' where rr, gg, and bb are hexadecimal
 representations of byte values.

 If *exact* is ``False`` (the default), and an exact match for the
 requested color cannot be found, the nearest color (determined simply
 by Euclidian distance) is returned. If *exact* is ``True`` and an exact
 match cannot be found, a :exc:`ValueError` will be raised::

 >>> from picraft import *
 >>> Block.from_color('#ffffff')
 <Block "wool" id=35 data=0>
 >>> Block.from_color('#ffffff', exact=True)
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "picraft/block.py", line 351, in from_color
 if exact:
 ValueError: no blocks match color #ffffff
 >>> Block.from_color((1, 0, 0))
 <Block "wool" id=35 data=14>

 Note that calling the default constructor with any of the formats
 accepted by this method is equivalent to calling this method::

 >>> Block('#ffffff')
 <Block "wool" id=35 data=0>
 """
 if isinstance(color, bytes):
 color = color.decode('utf-8')
 if isinstance(color, str):
 try:
 if not (color.startswith('#') and len(color) == 7):
 raise ValueError()
 color = (
 int(color[1:3], 16),
 int(color[3:5], 16),
 int(color[5:7], 16))
 except ValueError:
 raise ValueError('unrecognized color format: %s' % color)
 else:
 try:
 r, g, b = color
 except (TypeError, ValueError):
 raise ValueError('expected three values in color')
 if 0.0 <= r <= 1.0 and 0.0 <= g <= 1.0 and 0.0 <= b <= 1.0:
 color = tuple(int(n * 255) for n in color)
 try:
 id_, data = _BLOCKS_BY_COLOR[color]
 except KeyError:
 r, g, b = color
 if exact:
 raise ValueError(
 'no blocks match color #%06x' % (r << 16 | g << 8 | b))
 diff = lambda block_color: sqrt(
 sum((c1 - c2) ** 2 for c1, c2 in zip(color, block_color)))
 matched_color = sorted(_BLOCKS_BY_COLOR, key=diff)[0]
 id_, data = _BLOCKS_BY_COLOR[matched_color]
 return cls(id_, data)

 def __repr__(self):
 try:
 return '<Block "%s" id=%d data=%d>' % (self.name, self.id, self.data)
 except KeyError:
 return '<Block id=%d data=%d>' % (self.id, self.data)

 @property
 def pi(self):
 """
 Returns a bool indicating whether the block is present in the Pi
 Edition of Minecraft.
 """
 return _BLOCKS_BY_ID[self.id][0]

 @property
 def pocket(self):
 """
 Returns a bool indicating whether the block is present in the Pocket
 Edition of Minecraft.
 """
 return _BLOCKS_BY_ID[self.id][1]

 @property
 def name(self):
 """
 Return the name of the block. This is a unique identifier string which
 can be used to construct a :class:`Block` instance with
 :meth:`from_name`.
 """
 return _BLOCKS_BY_ID[self.id][2]

 @property
 def description(self):
 """
 Return a description of the block. This string is not guaranteed to be
 unique and is only intended for human use.
 """
 try:
 return _BLOCKS_DB[(self.id, self.data)][3]
 except KeyError:
 return _BLOCKS_DB[(self.id, 0)][3]

class Blocks(object):
 """
 This class implements the :attr:`~picraft.world.World.blocks` attribute.
 """
 def __init__(self, connection):
 self._connection = connection

 def __repr__(self):
 return '<Blocks>'

 def __getitem__(self, index):
 if isinstance(index, slice):
 index = vector_range(index.start, index.stop, index.step)
 if isinstance(index, vector_range):
 vr = index
 if not vr:
 warnings.warn(EmptySliceWarning(
 "ignoring empty slice passed to blocks"))
 elif (
 abs(vr.step) == Vector(1, 1, 1) and
 self._connection.server_version == 'raspberry-juice'):
 return [
 Block.from_string('%d,0' % int(i))
 for i in self._connection.transact(
 'world.getBlocks(%d,%d,%d,%d,%d,%d)' % (
 vr.start.x, vr.start.y, vr.start.z,
 vr.stop.x - vr.step.x, vr.stop.y - vr.step.y, vr.stop.z - vr.step.z)).split(',')
]
 else:
 return [
 Block.from_string(
 self._connection.transact(
 'world.getBlockWithData(%d,%d,%d)' % (v.x, v.y, v.z)))
 for v in vector_range(index.start, index.stop, index.step)
]
 else:
 return Block.from_string(
 self._connection.transact(
 'world.getBlockWithData(%d,%d,%d)' % (index.x, index.y, index.z)))

 def __setitem__(self, index, value):
 if isinstance(index, slice):
 index = vector_range(index.start, index.stop, index.step)
 if isinstance(index, vector_range):
 vr = index
 if not vr:
 warnings.warn(EmptySliceWarning(
 "ignoring empty slice passed to blocks"))
 elif (
 abs(vr.step) == Vector(1, 1, 1) and
 hasattr(value, 'id') and
 hasattr(value, 'data')):
 self._connection.send(
 'world.setBlocks(%d,%d,%d,%d,%d,%d,%d,%d)' % (
 vr.start.x, vr.start.y, vr.start.z,
 vr.stop.x - vr.step.x, vr.stop.y - vr.step.y, vr.stop.z - vr.step.z,
 value.id, value.data))
 else:
 for v, b in zip_longest(vr, value):
 if v is None:
 raise ValueError('too many blocks for vector range')
 if b is None:
 raise ValueError('not enough blocks for vector range')
 self._connection.send(
 'world.setBlock(%d,%d,%d,%d,%d)' % (
 v.x, v.y, v.z, b.id, b.data))
 else:
 self._connection.send(
 'world.setBlock(%d,%d,%d,%d,%d)' % (
 index.x, index.y, index.z, value.id, value.data))

AIR = Block(0)
STONE = Block(1)
GRASS = Block(2)
DIRT = Block(3)
COBBLESTONE = Block(4)
WOOD_PLANKS = Block(5)
SAPLING = Block(6)
BEDROCK = Block(7)
WATER_FLOWING = Block(8)
WATER = WATER_FLOWING
WATER_STATIONARY = Block(9)
LAVA_FLOWING = Block(10)
LAVA = LAVA_FLOWING
LAVA_STATIONARY = Block(11)
SAND = Block(12)
GRAVEL = Block(13)
GOLD_ORE = Block(14)
IRON_ORE = Block(15)
COAL_ORE = Block(16)
WOOD = Block(17)
LEAVES = Block(18)
GLASS = Block(20)
LAPIS_LAZULI_ORE = Block(21)
LAPIS_LAZULI_BLOCK = Block(22)
SANDSTONE = Block(24)
BED = Block(26)
COBWEB = Block(30)
GRASS_TALL = Block(31)
WOOL = Block(35)
FLOWER_YELLOW = Block(37)
FLOWER_CYAN = Block(38)
MUSHROOM_BROWN = Block(39)
MUSHROOM_RED = Block(40)
GOLD_BLOCK = Block(41)
IRON_BLOCK = Block(42)
STONE_SLAB_DOUBLE = Block(43)
STONE_SLAB = Block(44)
BRICK_BLOCK = Block(45)
TNT = Block(46)
BOOKSHELF = Block(47)
MOSS_STONE = Block(48)
OBSIDIAN = Block(49)
TORCH = Block(50)
FIRE = Block(51)
STAIRS_WOOD = Block(53)
CHEST = Block(54)
DIAMOND_ORE = Block(56)
DIAMOND_BLOCK = Block(57)
CRAFTING_TABLE = Block(58)
FARMLAND = Block(60)
FURNACE_INACTIVE = Block(61)
FURNACE_ACTIVE = Block(62)
DOOR_WOOD = Block(64)
LADDER = Block(65)
STAIRS_COBBLESTONE = Block(67)
DOOR_IRON = Block(71)
REDSTONE_ORE = Block(73)
SNOW = Block(78)
ICE = Block(79)
SNOW_BLOCK = Block(80)
CACTUS = Block(81)
CLAY = Block(82)
SUGAR_CANE = Block(83)
FENCE = Block(85)
GLOWSTONE_BLOCK = Block(89)
BEDROCK_INVISIBLE = Block(95)
STONE_BRICK = Block(98)
GLASS_PANE = Block(102)
MELON = Block(103)
FENCE_GATE = Block(107)
GLOWING_OBSIDIAN = Block(246)
NETHER_REACTOR_CORE = Block(247)

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 All modules for which code is available

		picraft.block

		picraft.connection

		picraft.events

		picraft.exc

		picraft.player

		picraft.vector

		picraft.world

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/picraft/events.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.events

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The events module defines the :class:`Events` class, which provides methods for
querying events in the Minecraft world, and :class:`BlockHitEvent` which is the
only event type currently supported.

.. note::

 All items in this module are available from the :mod:`picraft` namespace
 without having to import :mod:`picraft.events` directly.

The following items are defined in the module:

Events
======

.. autoclass:: Events
 :members:

BlockHitEvent
=============

.. autoclass:: BlockHitEvent(pos, face, player)
 :members:

PlayerPosEvent
==============

.. autoclass:: PlayerPosEvent(old_pos, new_pos, player)
 :members:

IdleEvent
=========

.. autoclass:: IdleEvent()
 :members:
"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

import logging
import threading
import time
from collections import namedtuple, Container

from .exc import ConnectionClosed
from .vector import Vector
from .player import Player

logger = logging.getLogger('picraft')

[docs]class BlockHitEvent(namedtuple('BlockHitEvent', ('pos', 'face', 'player'))):
 """
 Event representing a block being hit by a player.

 This tuple derivative represents the event resulting from a player striking
 a block with their sword in the Minecraft world. Users will not normally
 need to construct instances of this class, rather they are constructed and
 returned by calls to :meth:`~Events.poll`.

 .. note::

 Please note that the block hit event only registers when the player
 right clicks with the sword. For some reason, left clicks do not
 count.

 .. attribute:: pos

 A :class:`~picraft.vector.Vector` indicating the position of the block
 which was struck.

 .. attribute:: face

 A string indicating which side of the block was struck. This can be one
 of six values: 'x+', 'x-', 'y+', 'y-', 'z+', or 'z-'. The value
 indicates the axis, and direction along that axis, that the side faces:

 .. image:: block_faces.png

 .. attribute:: player

 A :class:`~picraft.player.Player` instance representing the player that
 hit the block.
 """

 @classmethod
 def from_string(cls, connection, s):
 v, f, p = s.rsplit(',', 2)
 return cls(Vector.from_string(v), {
 0: 'y-',
 1: 'y+',
 2: 'z-',
 3: 'z+',
 4: 'x-',
 5: 'x+',
 }[int(f)], Player(connection, int(p)))

 @property
 def __dict__(self):
 # Ensure __dict__ property works in Python 3.3 and above.
 return super(BlockHitEvent, self).__dict__

 def __repr__(self):
 return '<BlockHitEvent pos=%s face=%r player=%d>' % (
 self.pos, self.face, self.player.player_id)

[docs]class PlayerPosEvent(namedtuple('PlayerPosEvent', ('old_pos', 'new_pos', 'player'))):
 """
 Event representing a player moving.

 This tuple derivative represents the event resulting from a player moving
 within the Minecraft world. Users will not normally need to construct
 instances of this class, rather they are constructed and returned by calls
 to :meth:`~Events.poll`.

 .. attribute:: old_pos

 A :class:`~picraft.vector.Vector` indicating the location of the player
 prior to this event. The location includes decimal places (it is not
 the tile-position, but the actual position).

 .. attribute:: new_pos

 A :class:`~picraft.vector.Vector` indicating the location of the player
 as of this event. The location includes decimal places (it is not
 the tile-position, but the actual position).

 .. attribute:: player

 A :class:`~picraft.player.Player` instance representing the player that
 moved.
 """

 @property
 def __dict__(self):
 # Ensure __dict__ property works in Python 3.3 and above.
 return super(PlayerPosEvent, self).__dict__

 def __repr__(self):
 return '<PlayerPosEvent old_pos=%s new_pos=%s player=%d>' % (
 self.old_pos, self.new_pos, self.player.player_id)

[docs]class IdleEvent(namedtuple('IdleEvent', ())):
 """
 Event that fires in the event that no other events have occurred since the
 last poll. This is only used if :attr:`Events.include_idle` is ``True``.
 """

 @property
 def __dict__(self):
 # Ensure __dict__ property works in Python 3.3 and above.
 return super(IdleEvent, self).__dict__

 def __repr__(self):
 return '<IdleEvent>'

[docs]class Events(object):
 """
 This class implements the :attr:`~picraft.world.World.events` attribute.

 There are two ways of responding to picraft's events: the first is to
 :meth:`poll` for them manually, and process each event in the resulting
 list::

 >>> for event in world.events.poll():
 ... print(repr(event))
 ...
 <BlockHitEvent pos=1,1,1 face="y+" player=1>,
 <PlayerPosEvent old_pos=0.2,1.0,0.7 new_pos=0.3,1.0,0.7 player=1>

 The second is to "tag" functions as event handlers with the decorators
 provided and then call the :meth:`main_loop` function which will handle
 polling the server for you, and call all the relevant functions as needed::

 @world.events.on_block_hit(pos=Vector(1,1,1))
 def hit_block(event):
 print('You hit the block at %s' % event.pos)

 world.events.main_loop()

 By default, only block hit events will be tracked. This is because it is
 the only type of event that the Minecraft server provides information about
 itself, and thus the only type of event that can be processed relatively
 efficiently. If you wish to track player positions, assign a set of player
 ids to the :attr:`track_players` attribute. If you wish to include idle
 events (which fire when nothing else is produced in response to
 :meth:`poll`) then set :attr:`include_idle` to ``True``.

 Finally, the :attr:`poll_gap` attribute specifies how long to pause during
 each iteration of :meth:`main_loop` to permit event handlers some time to
 interact with the server. Setting this to 0 will provide the fastest
 response to events, but will result in event handlers having to fight with
 event polling for access to the server.
 """

 def __init__(self, connection):
 self._connection = connection
 self._handlers = []
 self._poll_gap = 0.1
 self._include_idle = False
 self._track_players = {}

 def _get_poll_gap(self):
 return self._poll_gap
 def _set_poll_gap(self, value):
 self._poll_gap = float(value)
 poll_gap = property(_get_poll_gap, _set_poll_gap, doc="""\
 The length of time (in seconds) to pause during :meth:`main_loop`.

 This property specifies the length of time to wait at the end of each
 iteration of :meth:`main_loop`. By default this is 0.1 seconds.

 The purpose of the pause is to give event handlers executing in the
 background time to communicate with the Minecraft server. Setting this
 to 0.0 will result in faster response to events, but also starves
 threaded event handlers of time to communicate with the server,
 resulting in "choppy" performance.
 """)

 def _get_track_players(self):
 return self._track_players.keys()
 def _set_track_players(self, value):
 try:
 self._track_players = {
 pid: Player(self._connection, pid).pos.round(1)
 for pid in value
 }
 except TypeError:
 if not isinstance(value, int):
 raise ValueError(
 'track_players value must be a player id '
 'or a sequence of player ids')
 self._track_players = {
 value: Player(self._connection, value).pos
 }
 track_players = property(_get_track_players, _set_track_players, doc="""\
 The set of player ids for which movement should be tracked.

 By default the :meth:`poll` method will not produce player position
 events (:class:`PlayerPosEvent`). Producing these events requires extra
 interactions with the Minecraft server (one for each player tracked)
 which slow down response to block hit events.

 If you wish to track player positions, set this attribute to the set of
 player ids you wish to track and their positions will be stored. The
 next time :meth:`poll` is called it will query the positions for all
 specified players and fire player position events if they have changed.

 Given that the :attr:`~picraft.world.World.players` attribute
 represents a dictionary mapping player ids to players, if you wish to
 track all players you can simply do::

 >>> world.events.track_players = world.players
 """)

 def _get_include_idle(self):
 return self._include_idle
 def _set_include_idle(self, value):
 self._include_idle = bool(value)
 include_idle = property(_get_include_idle, _set_include_idle, doc="""\
 If ``True``, generate an idle event when no other events would be
 generated by :meth:`poll`. This attribute defaults to ``False``.
 """)

[docs] def clear(self):
 """
 Forget all pending events that have not yet been retrieved with
 :meth:`poll`.

 This method is used to clear the list of events that have occurred
 since the last call to :meth:`poll` without retrieving them. This is
 useful for ensuring that events subsequently retrieved definitely
 occurred *after* the call to :meth:`clear`.
 """
 self._set_track_players(self._get_track_players())
 self._connection.send('events.clear()')

[docs] def poll(self):
 """
 Return a list of all events that have occurred since the last call to
 :meth:`poll`.

 For example::

 >>> w = World()
 >>> w.events.track_players = w.players
 >>> w.events.include_idle = True
 >>> w.events.poll()
 [<PlayerPosEvent old_pos=0.2,1.0,0.7 new_pos=0.3,1.0,0.7 player=1>,
 <BlockHitEvent pos=1,1,1 face="x+" player=1>,
 <BlockHitEvent pos=1,1,1 face="x+" player=1>]
 >>> w.events.poll()
 [<IdleEvent>]
 """
 def player_pos_events(positions):
 for pid, old_pos in positions.items():
 player = Player(self._connection, pid)
 new_pos = player.pos.round(1)
 if old_pos != new_pos:
 yield PlayerPosEvent(old_pos, new_pos, player)
 positions[pid] = new_pos

 def block_hit_events():
 s = self._connection.transact('events.block.hits()')
 if s:
 for e in s.split('|'):
 yield BlockHitEvent.from_string(self._connection, e)

 events = list(player_pos_events(self._track_players)) + list(block_hit_events())

 if events:
 return events
 elif self._include_idle:
 return [IdleEvent()]
 else:
 return []

[docs] def main_loop(self):
 """
 Starts the event polling loop when using the decorator style of event
 handling (see :meth:`on_block_hit`).

 This method will not return, so be sure that you have specified all
 your event handlers before calling it. The event loop can only be
 broken by an unhandled exception, or by closing the world's connection
 (in the latter case the resulting :exc:`~picraft.exc.ConnectionClosed`
 exception will be suppressed as it is assumed that you want to end the
 script cleanly).
 """
 logger.info('Entering event loop')
 try:
 while True:
 self.process()
 time.sleep(self.poll_gap)
 except ConnectionClosed:
 logger.info('Connection closed; exiting event loop')

[docs] def process(self):
 """
 Poll the server for events and call any relevant event handlers
 registered with :meth:`on_block_hit`.

 This method is called repeatedly the event handler loop implemented by
 :meth:`main_loop`; developers should only call this method when their
 (presumably non-threaded) event handler is engaged in a long operation
 and they wish to permit events to be processed in the meantime.
 """
 for event in self.poll():
 for handler in self._handlers:
 if handler.matches(event):
 handler.execute(event)

[docs] def on_idle(self, thread=False, multi=True):
 """
 Decorator for registering a function as an idle handler.

 This decorator is used to mark a function as an event handler which
 will be called when no other event handlers have been called in an
 iteration of :meth:`main_loop`. The function will be called with the
 corresponding :class:`IdleEvent` as the only argument.

 Note that idle events will only be generated if :attr:`include_idle`
 is set to ``True``.
 """
 def decorator(f):
 self._handlers.append(IdleHandler(f, thread, multi))
 return f
 return decorator

[docs] def on_player_pos(self, thread=False, multi=True, old_pos=None, new_pos=None):
 """
 Decorator for registering a function as a position change handler.

 This decorator is used to mark a function as an event handler which
 will be called for any events indicating that a player's position has
 changed while :meth:`main_loop` is executing. The function will be
 called with the corresponding :class:`PlayerPosEvent` as the only
 argument.

 The *old_pos* and *new_pos* attributes can be used to specify vectors
 or sequences of vectors (including a
 :class:`~picraft.vector.vector_range`) that the player position events
 must match in order to activate the associated handler. For example, to
 fire a handler every time any player enters or walks over blocks within
 (-10, 0, -10) to (10, 0, 10)::

 from picraft import World, Vector, vector_range

 world = World()
 world.events.track_players = world.players

 from_pos = Vector(-10, 0, -10)
 to_pos = Vector(10, 0, 10)
 @world.events.on_player_pos(new_pos=vector_range(from_pos, to_pos + 1))
 def in_box(event):
 world.say('Player %d stepped in the box' % event.player.player_id)

 world.events.main_loop()

 Various effects can be achieved by combining *old_pos* and *new_pos*
 filters. For example, one could detect when a player crosses a boundary
 in a particular direction, or decide when a player enters or leaves a
 particular area.

 Note that only players specified in :attr:`track_players` will generate
 player position events.
 """
 def decorator(f):
 self._handlers.append(PlayerPosHandler(f, thread, multi, old_pos, new_pos))
 return f
 return decorator

[docs] def on_block_hit(self, thread=False, multi=True, pos=None, face=None):
 """
 Decorator for registering a function as an event handler.

 This decorator is used to mark a function as an event handler which
 will be called for any events indicating a block has been hit while
 :meth:`main_loop` is executing. The function will be called with the
 corresponding :class:`BlockHitEvent` as the only argument.

 The *pos* attribute can be used to specify a vector or sequence of
 vectors (including a :class:`~picraft.vector.vector_range`); in this
 case the event handler will only be called for block hits on matching
 vectors.

 The *face* attribute can be used to specify a face or sequence of
 faces for which the handler will be called.

 For example, to specify that one handler should be called for hits
 on the top of any blocks, and another should be called only for hits
 on any face of block at the origin one could use the following code::

 from picraft import World, Vector

 world = World()

 @world.events.on_block_hit(pos=Vector(0, 0, 0))
 def origin_hit(event):
 world.say('You hit the block at the origin')

 @world.events.on_block_hit(face="y+")
 def top_hit(event):
 world.say('You hit the top of a block at %d,%d,%d' % event.pos)

 world.events.main_loop()

 The *thread* parameter (which defaults to ``False``) can be used to
 specify that the handler should be executed in its own background
 thread, in parallel with other handlers.

 Finally, the *multi* parameter (which only applies when *thread* is
 ``True``) specifies whether multi-threaded handlers should be allowed
 to execute in parallel. When ``True`` (the default), threaded handlers
 execute as many times as activated in parallel. When ``False``, a
 single instance of a threaded handler is allowed to execute at any
 given time; simultaneous activations are ignored (but not queued, as
 with unthreaded handlers).
 """
 def decorator(f):
 self._handlers.append(BlockHitHandler(f, thread, multi, pos, face))
 return f
 return decorator

class EventHandler(object):
 """
 This is an internal object used to associate event handlers with their
 activation restrictions.

 The *action* parameter specifies the function to be run when a matching
 event is received from the server.

 The *thread* parameter specifies whether the *action* will be launched in
 its own background thread. If *multi* is ``False``, then the
 :meth:`execute` method will ensure that any prior execution has finished
 before launching another one.
 """

 def __init__(self, action, thread, multi):
 self.action = action
 self.thread = thread
 self.multi = multi
 self._thread = None

 def execute(self, event):
 """
 Launches the *action* in a background thread if necessary. If required,
 this method also ensures threaded actions don't overlap.
 """
 if self.thread:
 if self.multi:
 threading.Thread(target=self.action, args=(event,)).start()
 elif not self._thread:
 self._thread = threading.Thread(target=self.execute_single, args=(event,))
 self._thread.start()
 else:
 self.action(event)

 def execute_single(self, event):
 try:
 self.action(event)
 finally:
 self._thread = None

 def matches(self, event):
 """
 Tests whether or not *event* match all the filters for the handler that
 this object represents.
 """
 return False

class PlayerPosHandler(EventHandler):
 """
 This class associates a handler with a player-position event.

 Constructor parameters are similar to the parent class,
 :class:`EventHandler` but additionally include
 """

 def __init__(self, action, thread, multi, old_pos, new_pos):
 super(PlayerPosHandler, self).__init__(action, thread, multi)
 self.old_pos = old_pos
 self.new_pos = new_pos

 def matches(self, event):
 return (
 isinstance(event, PlayerPosEvent) and
 self.matches_pos(self.old_pos, event.old_pos) and
 self.matches_pos(self.new_pos, event.new_pos))

 def matches_pos(self, test, pos):
 if test is None:
 return True
 if isinstance(test, Vector):
 return test == pos.floor()
 if isinstance(test, Container):
 return pos.floor() in test
 return False

class BlockHitHandler(EventHandler):
 """
 This class associates a handler with a block-hit event.

 Constructor parameters are similar to the parent class,
 :class:`EventHandler` but additionally include *pos* to specify the vector
 (or sequence of vectors) which an event must match in order to activate
 this action, and *face* to specify the block face (or set of faces) which
 an event must match. These filters must both match in order for the action
 to fire.
 """

 def __init__(self, action, thread, multi, pos, face):
 super(BlockHitHandler, self).__init__(action, thread, multi)
 self.pos = pos
 if isinstance(face, bytes):
 face = face.decode('ascii')
 self.face = face

 def matches(self, event):
 return (
 isinstance(event, BlockHitEvent) and
 self.matches_pos(event.pos) and
 self.matches_face(event.face))

 def matches_pos(self, pos):
 if self.pos is None:
 return True
 if isinstance(self.pos, Vector):
 return self.pos == pos
 if isinstance(self.pos, Container):
 return pos in self.pos
 return False

 def matches_face(self, face):
 if self.face is None:
 return True
 if isinstance(self.face, str):
 return self.face == face
 if isinstance(self.face, Container):
 return face in self.face
 return False

class IdleHandler(EventHandler):
 """
 This class associates a handler with an idle event.
 """

 def matches(self, event):
 return isinstance(event, IdleEvent)

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/picraft/vector.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.vector

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The vector module defines the :class:`Vector` class, which is the usual method
of represent coordinates or vectors when dealing with the Minecraft world. It
also provides functions like :func:`vector_range` for generating sequences of
vectors.

.. note::

 All items in this module are available from the :mod:`picraft` namespace
 without having to import :mod:`picraft.vector` directly.

The following items are defined in the module:

Vector
======

.. autoclass:: Vector(x=0, y=0, z=0)

Short-hand variants
===================

The :class:`Vector` class is used sufficiently often to justify the inclusion
of some shortcuts. The class itself is also available as ``V``, and vectors
representing the three axes are each available as ``X``, ``Y``, and ``Z``.
Finally, a vector representing the origin is available as ``O``::

 >>> from picraft import V, O, X, Y, Z
 >>> O
 Vector(x=0, y=0, z=0)
 >>> 2 * X
 Vector(x=2, y=0, z=0)
 >>> X + Y
 Vector(x=1, y=1, z=0)
 >>> (X + Y).angle_between(X)
 45.00000000000001
 >>> V(3, 4, 5).projection(X)
 3.0
 >>> X.rotate(90, about=Y)
 Vector(x=0.0, y=0.0, z=1.0)

vector_range
============

.. autoclass:: vector_range
 :members:

line
====

.. autofunction:: line

lines
=====

.. autofunction:: lines
"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')
from .compat import range

import math
from functools import total_ordering
from collections import namedtuple, Sequence
try:
 from itertools import zip_longest, islice
except ImportError:
 # Py2 compat
 from itertools import izip_longest as zip_longest, islice

[docs]class Vector(namedtuple('Vector', ('x', 'y', 'z'))):
 """
 Represents a 3-dimensional vector.

 This tuple derivative represents a 3-dimensional vector with x, y, z
 components. Instances can be constructed in a number of ways. By explicitly
 specifying the x, y, and z components (optionally with keyword
 identifiers), or leaving the empty to default to 0::

 >>> Vector(1, 1, 1)
 Vector(x=1, y=1, z=1)
 >>> Vector(x=2, y=0, z=0)
 Vector(x=2, y=0, z=0)
 >>> Vector()
 Vector(x=0, y=0, z=0)
 >>> Vector(y=10)
 Vector(x=0, y=10, z=0)

 Shortcuts are available for the X, Y, and Z axes::

 >>> X
 Vector(x=1, y=0, z=0)
 >>> Y
 Vector(x=0, y=1, z=0)

 Note that vectors don't much care whether their components are integers,
 floating point values, or ``None``::

 >>> Vector(1.0, 1, 1)
 Vector(x=1.0, y=1, z=1)
 >>> Vector(2, None, None)
 Vector(x=2, y=None, z=None)

 The class supports simple arithmetic operations with other vectors such as
 addition and subtraction, along with multiplication and division with
 scalars, raising to powers, bit-shifting, and so on. Such operations are
 performed element-wise [1]_::

 >>> v1 = Vector(1, 1, 1)
 >>> v2 = Vector(2, 2, 2)
 >>> v1 + v2
 Vector(x=3, y=3, z=3)
 >>> 2 * v2
 Vector(x=4, y=4, z=4)

 Simple arithmetic operations with scalars return a new vector with that
 operation performed on all elements of the original. For example::

 >>> v = Vector()
 >>> v
 Vector(x=0, y=0, z=0)
 >>> v + 1
 Vector(x=1, y=1, z=1)
 >>> 2 * (v + 2)
 Vector(x=4, y=4, z=4)
 >>> Vector(y=2) ** 2
 Vector(x=0, y=4, z=0)

 Within the Minecraft world, the X,Z plane represents the ground, while the
 Y vector represents height.

 .. note::

 Note that, as a derivative of tuple, instances of this class are
 immutable. That is, you cannot directly manipulate the x, y, and z
 attributes; instead you must create a new vector (for example, by
 adding two vectors together). The advantage of this is that vector
 instances can be used in sets or as dictionary keys.

 .. [1] I realize math purists will hate this (and demand that abs() should
 be magnitude and * should invoke matrix multiplication), but the
 element wise operations are sufficiently useful to warrant the
 short-hand syntax.

 .. automethod:: replace

 .. automethod:: ceil

 .. automethod:: floor

 .. automethod:: dot

 .. automethod:: cross

 .. automethod:: distance_to

 .. automethod:: angle_between

 .. automethod:: project

 .. automethod:: rotate

 .. attribute:: x

 The position or length of the vector along the X-axis. In the Minecraft
 world this can be considered to run left-to-right.

 .. attribute:: y

 The position or length of the vector along the Y-axis. In the Minecraft
 world this can be considered to run vertically up and down.

 .. attribute:: z

 The position or length of the vector along the Z-axis. In the Minecraft
 world this can be considered as depth (in or out of the screen).

 .. autoattribute:: magnitude

 .. autoattribute:: unit
 """

 def __new__(cls, x=0, y=0, z=0):
 return super(Vector, cls).__new__(cls, x, y, z)

 @classmethod
 def from_string(cls, s, type=int):
 x, y, z = s.split(',', 2)
 return cls(type(x), type(y), type(z))

 @property
 def __dict__(self):
 # This is required to work around a subtle issue encountered in Python
 # 3.3 and above. In these versions (probably deliberately), the
 # __dict__ property is not inherited by namedtuple descendents
 return super(Vector, self).__dict__

 def __str__(self):
 return '%s,%s,%s' % (self.x, self.y, self.z)

 def __add__(self, other):
 try:
 return Vector(self.x + other.x, self.y + other.y, self.z + other.z)
 except AttributeError:
 return Vector(self.x + other, self.y + other, self.z + other)

 __radd__ = __add__

 def __sub__(self, other):
 try:
 return Vector(self.x - other.x, self.y - other.y, self.z - other.z)
 except AttributeError:
 return Vector(self.x - other, self.y - other, self.z - other)

 def __mul__(self, other):
 try:
 return Vector(self.x * other.x, self.y * other.y, self.z * other.z)
 except AttributeError:
 return Vector(self.x * other, self.y * other, self.z * other)

 __rmul__ = __mul__

 def __truediv__(self, other):
 try:
 return Vector(self.x / other.x, self.y / other.y, self.z / other.z)
 except AttributeError:
 return Vector(self.x / other, self.y / other, self.z / other)

 def __floordiv__(self, other):
 try:
 return Vector(self.x // other.x, self.y // other.y, self.z // other.z)
 except AttributeError:
 return Vector(self.x // other, self.y // other, self.z // other)

 def __mod__(self, other):
 try:
 return Vector(self.x % other.x, self.y % other.y, self.z % other.z)
 except AttributeError:
 return Vector(self.x % other, self.y % other, self.z % other)

 def __pow__(self, other, modulo=None):
 if modulo is not None:
 try:
 # XXX What about other vector, modulo scalar, and other scalar, modulo vector?
 return Vector(
 pow(self.x, other.x, modulo.x),
 pow(self.y, other.y, modulo.y),
 pow(self.z, other.z, modulo.z))
 except AttributeError:
 return Vector(
 pow(self.x, other, modulo),
 pow(self.y, other, modulo),
 pow(self.z, other, modulo))
 try:
 return Vector(
 pow(self.x, other.x),
 pow(self.y, other.y),
 pow(self.z, other.z))
 except AttributeError:
 return Vector(
 pow(self.x, other),
 pow(self.y, other),
 pow(self.z, other))

 def __lshift__(self, other):
 try:
 return Vector(self.x << other.x, self.y << other.y, self.z << other.z)
 except AttributeError:
 return Vector(self.x << other, self.y << other, self.z << other)

 def __rshift__(self, other):
 try:
 return Vector(self.x >> other.x, self.y >> other.y, self.z >> other.z)
 except AttributeError:
 return Vector(self.x >> other, self.y >> other, self.z >> other)

 def __and__(self, other):
 try:
 return Vector(self.x & other.x, self.y & other.y, self.z & other.z)
 except AttributeError:
 return Vector(self.x & other, self.y & other, self.z & other)

 def __xor__(self, other):
 try:
 return Vector(self.x ^ other.x, self.y ^ other.y, self.z ^ other.z)
 except AttributeError:
 return Vector(self.x ^ other, self.y ^ other, self.z ^ other)

 def __or__(self, other):
 try:
 return Vector(self.x | other.x, self.y | other.y, self.z | other.z)
 except AttributeError:
 return Vector(self.x | other, self.y | other, self.z | other)

 def __neg__(self):
 return Vector(-self.x, -self.y, -self.z)

 def __pos__(self):
 return self

 def __abs__(self):
 return Vector(abs(self.x), abs(self.y), abs(self.z))

 def __bool__(self):
 return bool(self.x or self.y or self.z)

 def __trunc__(self):
 return Vector(math.trunc(self.x), math.trunc(self.y), math.trunc(self.z))

 # Py2 compat
 __nonzero__ = __bool__
 __div__ = __truediv__

[docs] def replace(self, x=None, y=None, z=None):
 """
 Return the vector with the x, y, or z axes replaced with the specified
 values. For example::

 >>> Vector(1, 2, 3).replace(z=4)
 Vector(x=1, y=2, z=4)
 """
 # XXX What if I want to use None?
 return Vector(
 self.x if x is None else x,
 self.y if y is None else y,
 self.z if z is None else z)

[docs] def floor(self):
 """
 Return the vector with the floor of each component. This is only useful
 for vectors containing floating point components::

 >>> Vector(0.5, -0.5, 1.9)
 Vector(0.0, -1.0, 1.0)
 """
 return Vector(
 int(math.floor(self.x)),
 int(math.floor(self.y)),
 int(math.floor(self.z)))

[docs] def ceil(self):
 """
 Return the vector with the ceiling of each component. This is only
 useful for vectors containing floating point components::

 >>> Vector(0.5, -0.5, 1.2)
 Vector(1.0, 0.0, 2.0)
 """
 return Vector(
 int(math.ceil(self.x)),
 int(math.ceil(self.y)),
 int(math.ceil(self.z)))

 def round(self, ndigits=0):
 """
 Return the vector with the rounded value of each component. This is
 only useful for vectors containing floating point components::

 >>> Vector(0.5, -0.5, 1.2)
 Vector(1.0, -1.0, 1.0)

 The *ndigits* argument operates as it does in the built-in
 :func:`round` function, specifying the number of decimal (or integer)
 places to round to.
 """
 return Vector(
 round(self.x, ndigits),
 round(self.y, ndigits),
 round(self.z, ndigits))

[docs] def dot(self, other):
 """
 Return the `dot product`_ of the vector with the *other* vector. The
 result is a scalar value. For example::

 >>> Vector(1, 2, 3).dot(Vector(2, 2, 2))
 12
 >>> Vector(1, 2, 3).dot(X)
 1

 .. _dot product: http://en.wikipedia.org/wiki/Dot_product
 """
 return self.x * other.x + self.y * other.y + self.z * other.z

[docs] def cross(self, other):
 """
 Return the `cross product`_ of the vector with the *other* vector. The
 result is another vector. For example::

 >>> Vector(1, 2, 3).cross(Vector(2, 2, 2))
 Vector(x=-2, y=4, z=-2)
 >>> Vector(1, 2, 3).cross(X)
 Vector(x=0, y=3, z=-2)

 .. _cross product: http://en.wikipedia.org/wiki/Cross_product
 """
 return Vector(
 self.y * other.z - self.z * other.y,
 self.z * other.x - self.x * other.z,
 self.x * other.y - self.y * other.x)

[docs] def distance_to(self, other):
 """
 Return the Euclidian distance between two three dimensional points
 (represented as vectors), calculated according to `Pythagoras'
 theorem`_. For example::

 >>> Vector(1, 2, 3).distance_to(Vector(2, 2, 2))
 1.4142135623730951
 >>> Vector().distance_to(X)
 1.0

 .. _Pythagoras' theorem: http://en.wikipedia.org/wiki/Pythagorean_theorem
 """
 return (other - self).magnitude

[docs] def angle_between(self, other):
 """
 Returns the angle between this vector and the *other* vector on a plane
 that contains both vectors. The result is measured in degrees. For
 example::

 >>> X.angle_between(Y)
 90.0
 >>> (X + Y).angle_between(X)
 45.00000000000001
 """
 return math.degrees(math.acos(self.unit.dot(other.unit)))

[docs] def project(self, other):
 """
 Return the `scalar projection`_ of this vector onto the *other* vector.
 This is a scalar indicating the length of this vector in the direction
 of the *other* vector. For example::

 >>> Vector(1, 2, 3).project(2 * Y)
 2.0
 >>> Vector(3, 4, 5).project(Vector(3, 4, 0))
 5.0

 .. _scalar projection: https://en.wikipedia.org/wiki/Scalar_projection
 """
 return self.dot(other.unit)

[docs] def rotate(self, angle, about, origin=None):
 """
 Return this vector after `rotation`_ of *angle* degrees about the line
 passing through *origin* in the direction *about*. Origin defaults to
 the vector 0, 0, 0. Hence, if this parameter is omitted this method
 calculates rotation about the axis (through the origin) defined by
 about. For example::

 >>> Y.rotate(90, about=X)
 Vector(x=0, y=6.123233995736766e-17, z=1.0)
 >>> Vector(3, 4, 5).rotate(30, about=X, origin=10 * Y)
 Vector(x=3.0, y=2.3038475772933684, z=1.330127018922194)

 Information about rotation around arbitrary lines was obtained from
 `Glenn Murray's informative site`_.

 .. _rotation: https://en.wikipedia.org/wiki/Rotation_group_SO%283%29
 .. _Glenn Murray's informative site: http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/
 """
 r = math.radians(angle)
 sin = math.sin(r)
 cos = math.cos(r)
 x, y, z = self
 if origin is None:
 # Fast-paths: rotation about a specific unit axis
 if about == X:
 return Vector(x, y * cos - z * sin, y * sin + z * cos)
 elif about == Y:
 return Vector(z * sin + x * cos, y, z * cos - x * sin)
 elif about == Z:
 return Vector(x * cos - y * sin, x * sin + y * cos, z)
 elif about == negX:
 return Vector(x, y * cos + z * sin, z * cos - y * sin)
 elif about == negY:
 return Vector(x * cos - z * sin, y, z * cos + x * sin)
 elif about == negZ:
 return Vector(x * cos + y * sin, y * cos - x * sin, z)
 # Rotation about an arbitrary axis
 u, v, w = about.unit
 return Vector(
 u * (u * x + v * y + w * z) * (1 - cos) + x * cos + (-w * y + v * z) * sin,
 v * (u * x + v * y + w * z) * (1 - cos) + y * cos + (w * x - u * z) * sin,
 w * (u * x + v * y + w * z) * (1 - cos) + z * cos + (-v * x + u * y) * sin)
 # Rotation about an arbitrary line
 a, b, c = origin
 u, v, w = about.unit
 return Vector(
 (a * (v ** 2 + w ** 2) - u * (b * v + c * w - u * x - v * y - w * z)) * (1 - cos) + x * cos + (-c * v + b * w - w * y + v * z) * sin,
 (b * (u ** 2 + w ** 2) - v * (a * u + c * w - u * x - v * y - w * z)) * (1 - cos) + y * cos + (c * u - a * w + w * x - u * z) * sin,
 (c * (u ** 2 + v ** 2) - w * (a * u + b * v - u * x - v * y - w * z)) * (1 - cos) + z * cos + (-b * u + a * v - v * x + u * y) * sin)

 @property
 def magnitude(self):
 """
 Returns the magnitude of the vector. This could also be considered the
 distance of the vector from the origin, i.e. ``v.magnitude`` is
 equivalent to ``Vector().distance_to(v)``. For example::

 >>> Vector(2, 4, 4).magnitude
 6.0
 >>> Vector().distance_to(Vector(2, 4, 4))
 6.0
 """
 return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)

 @property
 def unit(self):
 """
 Return a `unit vector`_ (a vector with a magnitude of one) with the
 same direction as this vector::

 >>> X.unit
 Vector(x=1.0, y=0.0, z=0.0)
 >>> (2 * Y).unit
 Vector(x=0.0, y=1.0, z=0.0)

 .. note::

 If the vector's magnitude is zero, this property returns the
 original vector.

 .. _unit vector: http://en.wikipedia.org/wiki/Unit_vector
 """
 try:
 return self / self.magnitude
 except ZeroDivisionError:
 return self

Short-hand variants

V = Vector
O = V()
X = V(x=1)
Y = V(y=1)
Z = V(z=1)
These aren't exposed as short-hands; they're only pre-calculated here to
speed up the fast-paths in the rotate() method
negX = V(x=-1)
negY = V(y=-1)
negZ = V(z=-1)

TODO Yes, I'm being lazy with total_ordering ... probably ought to define all
six comparison methods but I haven't got time right now ...

@total_ordering
[docs]class vector_range(Sequence):
 """
 Like :func:`range`, :class:`vector_range` is actually a type which
 efficiently represents a range of vectors. The arguments to the constructor
 must be :class:`Vector` instances (or objects which have integer ``x``,
 ``y``, and ``z`` attributes).

 If *step* is omitted, it defaults to ``Vector(1, 1, 1)``. If the *start*
 argument is omitted, it defaults to ``Vector(0, 0, 0)``. If any element
 of the *step* vector is zero, :exc:`ValueError` is raised.

 The contents of the range are largely determined by the *step* and *order*
 which specifies the order in which the axes of the range will be
 incremented. For example, with the order ``'xyz'``, the X-axis will be
 incremented first, followed by the Y-axis, and finally the Z-axis. So, for
 a range with the default *start*, *step*, and *stop* set to ``Vector(3, 3,
 3)``, the contents of the range will be::

 >>> list(vector_range(Vector(3, 3, 3), order='xyz'))
 [Vector(0, 0, 0), Vector(1, 0, 0), Vector(2, 0, 0),
 Vector(0, 1, 0), Vector(1, 1, 0), Vector(2, 1, 0),
 Vector(0, 2, 0), Vector(1, 2, 0), Vector(2, 2, 0),
 Vector(0, 0, 1), Vector(1, 0, 1), Vector(2, 0, 1),
 Vector(0, 1, 1), Vector(1, 1, 1), Vector(2, 1, 1),
 Vector(0, 2, 1), Vector(1, 2, 1), Vector(2, 2, 1),
 Vector(0, 0, 2), Vector(1, 0, 2), Vector(2, 0, 2),
 Vector(0, 1, 2), Vector(1, 1, 2), Vector(2, 1, 2),
 Vector(0, 2, 2), Vector(1, 2, 2), Vector(2, 2, 2)]

 Vector ranges implement all common sequence operations except concatenation
 and repetition (due to the fact that range objects can only represent
 sequences that follow a strict pattern and repetition and concatenation
 usually cause the resulting sequence to violate that pattern).

 Vector ranges are extremely efficient compared to an equivalent
 :func:`list` or :func:`tuple` as they take a small (fixed) amount of
 memory, storing only the arguments passed in its construction and
 calculating individual items and sub-ranges as requested.

 Vector range objects implement the :class:`collections.Sequence` ABC,
 and provide features such as containment tests, element index lookup,
 slicing and support for negative indices.

 The default order (``'zxy'``) may seem an odd choice. This is primarily
 used as it's the order used by the Raspberry Juice server when returning
 results from the :ref:`world.getBlocks` call. In turn, Raspberry Juice
 probably uses this order as it results in returning a horizontal layer of
 vectors at a time (given the Y-axis is used for height in the Minecraft
 world).

 .. warning::

 Bear in mind that the ordering of a vector range may have a bearing on
 tests for its ordering and equality. Two ranges with different orders
 are unlikely to test equal even though they may have the same *start*,
 stop, and *step* attributes (and thus contain the same vectors, but
 in a different order).

 Vector ranges can be accessed by integer index, by :class:`Vector` index,
 or by a slice of vectors. For example::

 >>> v = vector_range(Vector() + 1, Vector() + 3)
 >>> list(v)
 [Vector(x=1, y=1, z=1),
 Vector(x=1, y=1, z=2),
 Vector(x=2, y=1, z=1),
 Vector(x=2, y=1, z=2),
 Vector(x=1, y=2, z=1),
 Vector(x=1, y=2, z=2),
 Vector(x=2, y=2, z=1),
 Vector(x=2, y=2, z=2)]
 >>> v[0]
 Vector(x=1, y=1, z=1)
 >>> v[Vector(0, 0, 0)]
 Vector(x=1, y=1, z=1)
 >>> v[Vector(1, 0, 0)]
 Vector(x=2, y=1, z=1)
 >>> v[-1]
 Vector(x=2, y=2, z=2)
 >>> v[Vector() - 1]
 Vector(x=2, y=2, z=2)
 >>> v[Vector(x=1):]
 vector_range(Vector(x=2, y=1, z=1), Vector(x=3, y=3, z=3),
 Vector(x=1, y=1, z=1), order='zxy')
 >>> list(v[Vector(x=1):])
 [Vector(x=2, y=1, z=1),
 Vector(x=2, y=1, z=2),
 Vector(x=2, y=2, z=1),
 Vector(x=2, y=2, z=2)]

 However, integer slices are not currently permitted.
 """

 def __init__(
 self, start, stop=None, step=None, order='zxy'):
 if stop is None:
 start, stop = Vector(), start
 if step is None:
 step = Vector(1, 1, 1)
 if (start != start // 1) or (stop != stop // 1) or (step != step // 1):
 raise TypeError('integer vectors are required')
 if order not in ('xyz', 'xzy', 'yxz', 'yzx', 'zxy', 'zyx'):
 raise ValueError('invalid order: %s' % order)
 if not (step.x and step.y and step.z):
 raise ValueError('no element of step may be zero')
 self._start = start
 self._stop = stop
 self._step = step
 self._order = order
 self._ranges = [
 range(
 getattr(self.start, axis),
 getattr(self.stop, axis),
 getattr(self.step, axis))
 for axis in order
]
 self._indexes = [
 order.index(axis)
 for axis in 'xyz'
]
 self._xrange, self._yrange, self._zrange = (
 self._ranges[i] for i in self._indexes
)
 self._len = len(self._xrange) * len(self._yrange) * len(self._zrange)

 @property
 def start(self):
 return self._start

 @property
 def stop(self):
 return self._stop

 @property
 def step(self):
 return self._step

 @property
 def order(self):
 return self._order

 def __repr__(self):
 if self.start == Vector() and self.step == Vector() + 1:
 return 'vector_range(%r, order=%r)' % (self.stop, self.order)
 elif self.step == Vector() + 1:
 return 'vector_range(%r, %r, order=%r)' % (
 self.start, self.stop, self.order)
 else:
 return 'vector_range(%r, %r, %r, order=%r)' % (
 self.start, self.stop, self.step, self.order)

 def __len__(self):
 return self._len

 def __lt__(self, other):
 for v1, v2 in zip_longest(self, other):
 if v1 < v2:
 return True
 elif v1 > v2:
 return False
 return False

 def __eq__(self, other):
 # Fast-path: if the other object is an identical vector_range we
 # can quickly test whether we're equal
 if isinstance(other, vector_range):
 return (
 self._xrange == other._xrange and
 self._yrange == other._yrange and
 self._zrange == other._zrange and
 self.order == other.order
)
 # Normal case: test every element in each sequence
 for v1, v2 in zip_longest(self, other):
 if v1 != v2:
 return False
 return True

 def __ne__(self, other):
 return not self.__eq__(other)

 def __iter__(self):
 for i in range(len(self)):
 yield self[i]

 def __reversed__(self):
 for i in reversed(range(len(self))):
 yield self[i]

 def __contains__(self, value):
 try:
 self.index(value)
 except ValueError:
 return False
 else:
 return True

 def __bool__(self):
 return len(self) > 0

 # Py2 compat
 __nonzero__ = __bool__

 def __getitem__(self, index):
 if isinstance(index, slice):
 return self._get_slice(index)
 elif isinstance(index, Vector):
 try:
 return Vector(*(
 self._ranges[i][j]
 for i, j in zip(self._indexes, index)
))
 except IndexError:
 raise IndexError('list index out of range')
 else:
 if index < 0:
 index += len(self)
 if not (0 <= index < len(self)):
 raise IndexError('list index out of range')
 v = (
 self._ranges[0][index % len(self._ranges[0])],
 self._ranges[1][(index // len(self._ranges[0])) % len(self._ranges[1])],
 self._ranges[2][index // (len(self._ranges[0]) * len(self._ranges[1]))],
)
 return Vector(*(v[i] for i in self._indexes))

 def _get_slice(self, s):
 try:
 step = Vector() + 1 if s.step is None else s.step
 start = Vector(None, None, None) if s.start is None else s.start
 stop = Vector(None, None, None) if s.stop is None else s.stop
 if not (step.x and step.y and step.z):
 raise ValueError(
 "every element of the slice's step must be non-zero")
 x_range = self._xrange[slice(start.x, stop.x, step.x)]
 y_range = self._yrange[slice(start.y, stop.y, step.y)]
 z_range = self._zrange[slice(start.z, stop.z, step.z)]
 except AttributeError:
 raise ValueError(
 "vector_range slices must be composed of Vectors")
 return vector_range(
 Vector(x_range.start, y_range.start, z_range.start),
 Vector(x_range.stop, y_range.stop, z_range.stop),
 Vector(x_range.step, y_range.step, z_range.step),
 self.order)

[docs] def index(self, value):
 """
 Return the zero-based index of *value* within the range, or raise
 :exc:`ValueError` if *value* does not exist in the range.
 """
 ranges = self._ranges
 i, j, k = (getattr(value, axis) for axis in self.order)
 try:
 i_indexes = set(rmod(len(ranges[0]), ranges[0].index(i), range(len(self))))
 j_indexes = set(
 b
 for a in rmod(len(ranges[1]), ranges[1].index(j),
 range(len(self) // len(ranges[0])))
 for b in rdiv(len(ranges[0]), a)
)
 k_indexes = set(rdiv(len(ranges[0]) * len(ranges[1]), ranges[2].index(k)))
 result = i_indexes & j_indexes & k_indexes
 assert len(result) == 1
 result = next(iter(result))
 except ValueError:
 raise ValueError('%r is not in range' % (value,))
 else:
 return result

[docs] def count(self, value):
 """
 Return the count of instances of *value* within the range (note this
 can only be 0 or 1 in the case of a range, and thus is equivalent to
 testing membership with ``in``).
 """
 # count is provided by the ABC but inefficiently; given no vectors in
 # the range can be duplicated we provide a more efficient version here
 if value in self:
 return 1
 else:
 return 0

def rmod(denom, result, num_range):
 """
 Calculates the inverse of a mod operation.

 The *denom* parameter specifies the denominator of the original mod (%)
 operation. In this implementation, *denom* must be greater than 0. The
 result parameter specifies the result of the mod operation. For obvious
 reasons this value must be in the range ``[0, denom)`` (greater than or
 equal to zero and less than the denominator).

 Finally, *num_range* specifies the range that the numerator of the original
 mode operation can lie in. This must be an iterable sorted in ascending
 order with unique values (e.g. most typically a :func:`range`).

 The function returns the set of potential numerators (guaranteed to be a
 subset of *num_range*).
 """
 if denom <= 0:
 raise ValueError('invalid denominator')
 if not (0 <= result < denom):
 return set()
 if len(num_range) == 0:
 return set()
 assert num_range[-1] >= num_range[0]
 start = num_range[0] + (result - num_range[0] % denom) % denom
 stop = num_range.stop
 return range(start, stop, denom)

def rdiv(denom, result):
 """
 Calculates the inverse of a div operation.

 The *denom* parameter specifies the denominator of the original div (//)
 operation. In this implementation, *denom* must be greater than 0. The
 result parameter specifies the result of the div operation.

 The function returns the set of potential numerators.
 """
 if denom <= 0:
 raise ValueError('invalid denominator')
 return range(result * denom, result * denom + denom)

def sign(v):
 """
 Returns the sign of v as -1, 0, or 1; works for scalar values or
 :class:`Vector` instances.
 """
 try:
 return Vector(sign(v.x), sign(v.y), sign(v.z))
 except AttributeError:
 return 1 if v > 0 else -1 if v < 0 else 0

[docs]def line(start, end):
 """
 A three-dimensional implementation of `Bresenham's line algorithm`_,
 derived largely from `Bob Pendelton's implementation`_ (public domain).
 Given the end points of the line as the *start* and *end* vectors, this
 generator function yields the coordinate of each block (inclusive of the
 start and *end* vectors) that should be filled in to render the line.

 For example::

 >>> list(line(O, V(10, 5, 0)))
 [Vector(x=0, y=0, z=0),
 Vector(x=1, y=1, z=0),
 Vector(x=2, y=1, z=0),
 Vector(x=3, y=2, z=0),
 Vector(x=4, y=2, z=0),
 Vector(x=5, y=3, z=0),
 Vector(x=6, y=3, z=0),
 Vector(x=7, y=4, z=0),
 Vector(x=8, y=4, z=0),
 Vector(x=9, y=5, z=0),
 Vector(x=10, y=5, z=0)]

 .. _Bresenham's line algorithm: https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
 .. _Bob Pendelton's implementation: ftp://ftp.isc.org/pub/usenet/comp.sources.unix/volume26/line3d
 """
 delta = end - start
 # Calculate the amount to increment each axis by; only the dominant axis
 # will advance by this amount on *every* iteration. Other axes will only
 # increment when the error demands it
 pos_inc = sign(delta)
 # Set up a vector containing the error incrementor. This will be added to
 # values tracking the axis error on each iteration
 error_inc = abs(delta) << 1
 # Calculate the subordinate and dominant axes. The dominant axis is simply
 # the one in which we must move furthest
 sub_axis1, sub_axis2, dominant_axis = sorted(
 'xyz', key=lambda axis: getattr(error_inc, axis))
 # Set up the error decrementor. This will be subtracted from the error
 # values when they turn positive (indicating that the corresponding axis
 # should advance)
 error_dec = getattr(error_inc, dominant_axis)
 # Set up a vector to track the error (this is only really required for the
 # subordinate axes)
 error = error_inc - (error_dec >> 1)
 # Convert vectors to dicts for the remainder of the algorithm
 error = error._asdict()
 error_inc = error_inc._asdict()
 pos_inc = pos_inc._asdict()
 pos = start._asdict()
 end = getattr(end, dominant_axis)
 while True:
 yield Vector(**pos)
 if pos[dominant_axis] == end:
 break
 pos[dominant_axis] += pos_inc[dominant_axis]
 if error[sub_axis1] >= 0:
 pos[sub_axis1] += pos_inc[sub_axis1]
 error[sub_axis1] -= error_dec
 error[sub_axis1] += error_inc[sub_axis1]
 if error[sub_axis2] >= 0:
 pos[sub_axis2] += pos_inc[sub_axis2]
 error[sub_axis2] -= error_dec
 error[sub_axis2] += error_inc[sub_axis2]

[docs]def lines(points, closed=True):
 """
 Extension of the :func:`line` function which returns all vectors necessary
 to render the lines connecting the specified *points* (which is an iterable
 of :class:`Vector` instances).

 If the optional *closed* parameter is ``True`` (the default) the last point
 in the *points* sequence will be connected to the first point. Otherwise,
 the lines will be left disconnected (assuming the last point is not
 coincident with the first). For example::

 >>> points = [O, 4*X, 4*Z]
 >>> list(lines(points))
 [Vector(x=0, y=0, z=0),
 Vector(x=1, y=0, z=0),
 Vector(x=2, y=0, z=0),
 Vector(x=3, y=0, z=0),
 Vector(x=4, y=0, z=0),
 Vector(x=3, y=0, z=1),
 Vector(x=2, y=0, z=2),
 Vector(x=1, y=0, z=3),
 Vector(x=0, y=0, z=4),
 Vector(x=0, y=0, z=3),
 Vector(x=0, y=0, z=2),
 Vector(x=0, y=0, z=1),
 Vector(x=0, y=0, z=0)]
 """
 first = None
 start = None
 for point in points:
 if start is None:
 first = point
 yield first
 else:
 for v in islice(line(start, point), 1, None):
 yield v
 start = point
 if closed and first != point:
 for v in islice(line(point, first), 1, None):
 yield v

def circle(center, radius, plane=Y):
 """
 Generates the coordinates of a three-dimensional circle centered at the
 vector *center*. The *radius* parameter is a vector specifying the distance
 of the circumference from the center. The optional *plane* parameter
 specifies another vector which, in combination with the *radius* vector,
 gives the plane that the circle exists within.

 For example, to create a circle centered at (0, 10, 0), with a radius of 5
 units, existing in the X-Y plane::

 >>> circle(10*Y, 5*X, Y)

 To create another circle with the same center and radius, but existing in
 the X-Z (ground) plane::

 >>> circle(10*Y, 5*X, Z)

 The algorithm used by this function is based on the `differences of roots`_
 method, extended to three dimensions.
 """
 if radius.angle_between(plane) != 90:
 plane = radius.cross(-(radius.cross(plane)))
 perp = plane.unit
 r = radius.magnitude**2
 last_points = None
 result = set()
 for radial_point in line(-radius, radius):
 circum_v = (perp * math.sqrt(r - radial_point.magnitude**2)).floor()
 top_point = (radial_point + circum_v)
 bottom_point = (radial_point - circum_v)
 if last_points is not None:
 for p in line(last_points[0], top_point):
 result.add(center + p)
 for p in line(last_points[1], bottom_point):
 result.add(center + p)
 last_points = (top_point, bottom_point)
 return result

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/picraft/connection.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.connection

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The connection module defines the :class:`Connection` class, which represents
the network connection to the Minecraft server. Its primary purpose for users
of the library is to initiate batch sending via the
:meth:`Connection.batch_start` method.

.. note::

 All items in this module are available from the :mod:`picraft` namespace
 without having to import :mod:`picraft.connection` directly.

The following items are defined in the module:

Connection
==========

.. autoclass:: Connection
"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

import socket
import logging
import select
import threading

from .exc import (
 CommandError,
 NoResponse,
 BatchStarted,
 BatchNotStarted,
 ConnectionClosed,
)

logger = logging.getLogger('picraft')

[docs]class Connection(object):
 """
 Represents the connection to the Minecraft server.

 The *host* parameter specifies the hostname or IP address of the Minecraft
 server, while *port* specifies the port to connect to (these typically take
 the values "127.0.0.1" and 4711 respectively).

 The *timeout* parameter specifies the maximum time that the client will
 wait after sending a command before assuming that the command has succeeded
 (see the :ref:`protocol` section for more information). If *ignore_errors*
 is ``True``, act like the official reference implementation and ignore all
 errors for commands which do not return data.

 Users will rarely need to construct a :class:`Connection` object
 themselves. An instance of this class is constructed by
 :class:`~picraft.world.World` to handle communication with the game server
 (:attr:`~picraft.world.World.connection`).

 The most important aspect of this class is its ability to "batch"
 transmissions together. Typically, the :meth:`send` method is used to
 transmit requests to the Minecraft server. When this is called normally
 (outside of a batch), it immediately transmits the requested data. However,
 if :meth:`batch_start` has been called first, the data is *not* sent
 immediately, but merely appended to the batch. The :meth:`batch_send`
 method can then be used to transmit all requests simultaneously (or
 alternatively, :meth:`batch_forget` can be used to discard the list). See
 the docs of these methods for more information.

 .. automethod:: close

 .. automethod:: send

 .. automethod:: transact

 .. automethod:: batch_start

 .. automethod:: batch_send

 .. automethod:: batch_forget

 .. attribute:: ignore_errors

 If ``False`` (the default), use the :attr:`timeout` to determine when
 responses have been successful. If ``True`` assume any response without
 an expected reply is successful (this is the behaviour of the reference
 implementation; it is faster but less "safe").

 .. attribute:: timeout

 The length of time in seconds to wait for a response (positive or
 negative) from the server when :attr:`ignore_errors` is ``False``.

 .. attribute:: encoding

 The encoding that will be used for messages transmitted to, and
 received from the server. Defaults to ``'ascii'``.

 .. autoattribute:: server_version
 """

 def __init__(
 self, host, port, timeout=0.3, ignore_errors=False,
 encoding='ascii'):
 self._lock = threading.Lock()
 self._local = threading.local()
 self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 # This is effectively an interactive protocol, so disable Nagle's
 # algorithm for better performance
 self._socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
 self._socket.connect((host, port))
 self._rfile = self._socket.makefile('rb', -1)
 self._wfile = self._socket.makefile('wb', 0) # no buffering for writes
 self.timeout = timeout
 self.encoding = encoding
 # Determine what version of Minecraft we're talking to. Sadly, nobody
 # seems to have thought about implementating an explicit means of
 # doing this (a connection message, a getVersion() call, etc.) so
 # we're relying on observed differences in implementation here...
 self.ignore_errors = False
 try:
 test_result = self.transact('foo()')
 except CommandError:
 self._server_version = 'raspberry-juice'
 except NoResponse:
 self._server_version = 'minecraft-pi'
 else:
 raise CommandError('unexpected response to foo() test: %s' %
 test_result)
 self.ignore_errors = ignore_errors

 def __repr__(self):
 host, port = self._socket.getpeername()
 return '<Connection host="%s", port=%d, server_version="%s">' % (
 host, port, self._server_version)

 @property
 def server_version(self):
 """
 Returns an object (currently just a string) representing the version
 of the Minecraft server we're talking to. Presently this is just
 ``'minecraft-pi'`` or ``'raspberry-juice'``.
 """
 return self._server_version

[docs] def close(self):
 """
 Closes the connection.

 This method can be used to close down the connection to the game
 server. After this method is called, any further requests will raise a
 :exc:`~picraft.exc.ConnectionClosed` exception.
 """
 try:
 self.batch_forget()
 except BatchNotStarted:
 pass
 with self._lock:
 if self._rfile:
 self._rfile.close()
 self._rfile = None
 if self._wfile:
 self._wfile.close()
 self._wfile = None
 if self._socket:
 self._socket.shutdown(socket.SHUT_RDWR)
 self._socket.close()
 self._socket = None

 def _readable(self, timeout):
 """
 Determines whether the socket is readable within the given timeout.
 """
 return bool(select.select([self._socket], [], [], timeout)[0])

 def _drain(self):
 """
 Drain all data from the readable end of the socket. This is typically
 used to ensure that any "Fail" messages are removed prior to executing
 something for which we expect a result.
 """
 while True:
 if not self._readable(0):
 break
 self._socket.recv(1500)

 def _send(self, buf):
 """
 Write *buf* (suitably encoded) to the socket.
 """
 if not buf.endswith('\n'):
 buf += '\n'
 buf = buf.encode(self.encoding)
 if self.ignore_errors:
 self._drain()
 self._wfile.write(buf)
 logger.debug('>: %r', buf)

 def _receive(self, required=False):
 """
 Read a line from the socket, and return it (after decoding and
 stripping any trailing newline). If no response is received before
 :attr:`timeout` has elapsed, then the result depends on *required* and
 :attr:`ignore_errors`. If *required* is ``False`` or
 :attr:`ignore_errors` is ``True``, the method simply returns ``None``.
 Otherwise, a :exc:`~picraft.exc.NoResponse` error is raised.

 If the response received is "Fail", a :exc:`~picraft.exc.CommandError`
 exception is raised (this is case even if :attr:`ignore_errors` is
 ``True`` to maintain compatibility with the reference implementation).
 """
 if not self._readable(self.timeout):
 if required and not self.ignore_errors:
 raise NoResponse('no response received')
 return
 result = self._rfile.readline()
 logger.debug('<: %r', result)
 result = result.decode(self.encoding).rstrip('\n')
 if result == 'Fail':
 raise CommandError('an error occurred')
 return result

[docs] def send(self, buf):
 """
 Transmits the contents of *buf* to the connected server.

 If no batch has been initiated (with :meth:`batch_start`), this method
 immediately communicates the contents of *buf* to the connected
 Minecraft server. If *buf* is a unicode string, the method attempts
 to encode the content in a byte-encoding prior to transmission (the
 encoding used is the :attr:`encoding` attribute of the class which
 defaults to "ascii").

 If a batch has been initiated, the contents of *buf* are appended to
 the latest batch that was started (batches can be nested; see
 :meth:`batch_start` for more information).
 """
 if hasattr(self._local, 'batch'):
 self._local.batch.append(buf)
 else:
 with self._lock:
 if not self._socket:
 raise ConnectionClosed('connection closed')
 self._send(buf)
 if not self.ignore_errors:
 self._receive()

[docs] def transact(self, buf):
 """
 Transmits the contents of *buf*, and returns the reply string.

 This method immediately communicates the contents of *buf* to the
 connected server, then reads a line of data in reply and returns it.

 .. note::

 This method ignores the batch mechanism entirely as transmission
 is required in order to obtain the response. As this method
 is typically used to implement "getters", this is not usually an
 issue but it is worth bearing in mind.
 """
 with self._lock:
 if not self._socket:
 raise ConnectionClosed('connection closed')
 self._send(buf)
 return self._receive(required=True)

[docs] def batch_start(self):
 """
 Starts a new batch transmission.

 When called, this method starts a new batch transmission. All
 subsequent calls to :meth:`send` will append data to the batch buffer
 instead of actually sending the data.

 To terminate the batch transmission, call :meth:`batch_send` or
 :meth:`batch_forget`. If a batch has already been started, a
 :exc:`~picraft.exc.BatchStarted` exception is raised.

 .. note::

 This method can be used as a context manager
 (:ref:`the-with-statement`) which will cause a batch to be started,
 and implicitly terminated with :meth:`batch_send` or
 :meth:`batch_forget` depending on whether an exception is raised
 within the enclosed block.
 """
 if hasattr(self._local, 'batch'):
 raise BatchStarted('batch already started')
 self._local.batch = []
 return self

[docs] def batch_send(self):
 """
 Sends the batch transmission.

 This method is called after :meth:`batch_start` and :meth:`send` have
 been used to build up a list of batch commands. All the commands will
 be combined and sent to the server as a single transmission.

 If no batch is currently in progress, a
 :exc:`~picraft.exc.BatchNotStarted` exception will be raised.
 """
 if not hasattr(self._local, 'batch'):
 raise BatchNotStarted('no batch in progress')
 try:
 if self._local.batch:
 buf = '\n'.join(self._local.batch)
 with self._lock:
 if not self._socket:
 raise ConnectionClosed('connection closed')
 self._send(buf)
 try:
 if not self.ignore_errors:
 self._receive()
 finally:
 self._drain()
 finally:
 del self._local.batch

[docs] def batch_forget(self):
 """
 Terminates a batch transmission without sending anything.

 This method is called after :meth:`batch_start` and :meth:`send`
 have been used to build up a list of batch commands. All commands in
 the batch will be cleared without sending anything to the server.

 If no batch is currently in progress, a
 :exc:`~picraft.exc.BatchNotStarted` exception will be raised.
 """
 if not hasattr(self._local, 'batch'):
 raise BatchNotStarted('no batch in progress')
 del self._local.batch

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, exc_tb):
 if exc_type is None:
 self.batch_send()
 else:
 self.batch_forget()

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/picraft/player.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.player

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The player module defines the :class:`Players` class, which is available via
the :attr:`~picraft.world.World.players` attribute, the :class:`Player` class,
which represents an arbitrary player in the world, and the :class:`HostPlayer`
class which represents the player on the host machine (accessible via the
:attr:`~picraft.world.World.player` attribute).

.. note::

 All items in this module are available from the :mod:`picraft` namespace
 without having to import :mod:`picraft.player` directly.

The following items are defined in the module:

Player
======

.. autoclass:: Player
 :inherited-members:
 :members:

HostPlayer
==========

.. autoclass:: HostPlayer
 :inherited-members:
 :members:
"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

from .exc import ConnectionError, NotSupported
from .vector import Vector

class Players(object):
 """
 Thie class implements the :attr:`~picraft.world.World.players` attribute.
 """

 def __init__(self, connection):
 self._connection = connection
 self._cache = {}

 def __repr__(self):
 self._refresh()
 return '<Players keys={%s}>' % (', '.join(str(i) for i in self._cache))

 def _refresh(self):
 self._cache = {
 pid: self._cache.get(pid, Player(self._connection, pid))
 for pid in (
 int(i) for i in
 self._connection.transact('world.getPlayerIds()').split('|')
)
 }

 def __len__(self):
 self._refresh()
 return len(self._cache)

 def __contains__(self, key):
 self._refresh()
 return key in self._cache

 def __iter__(self):
 self._refresh()
 return iter(self._cache)

 def __getitem__(self, key):
 self._refresh()
 try:
 return self._cache[key]
 except KeyError as e:
 if self._connection.server_version == 'raspberry-juice':
 try:
 key = int(self._connection.transact('world.getPlayerId(%s)' % key))
 except ConnectionError:
 # Ignore failed lookups and fall-through to the re-raise
 pass
 else:
 return self._cache[key]
 raise e

 def keys(self):
 self._refresh()
 return self._cache.keys()

 def values(self):
 self._refresh()
 return self._cache.values()

 def items(self):
 self._refresh()
 return self._cache.items()

class BasePlayer(object):
 """
 Base class for players.
 """

 def __init__(self, connection, prefix, player_id):
 self._connection = connection
 self._player_id = player_id
 self._prefix = prefix

 def _cmd(self, command, *args):
 if self._player_id is not None:
 args = (self._player_id,) + args
 args = ','.join(str(arg) for arg in args)
 return '%s.%s(%s)' % (self._prefix, command, args)

 def _get_pos(self):
 return Vector.from_string(
 self._connection.transact(self._cmd('getPos')), type=float)
 def _set_pos(self, value):
 self._connection.send(
 self._cmd('setPos', value.x, value.y, value.z))
 pos = property(_get_pos, _set_pos, doc="""\
 The precise position of the player within the world.

 This property returns the position of the selected player within the
 Minecraft world, as a :class:`Vector` instance. This is the *precise*
 position of the player including decimal places (representing portions
 of a tile). You can assign to this property to reposition the player.
 """)

 def _get_tile_pos(self):
 return Vector.from_string(
 self._connection.transact(self._cmd('getTile')))
 def _set_tile_pos(self, value):
 self._connection.send(
 self._cmd('setTile', value.x, value.y, value.z))
 tile_pos = property(_get_tile_pos, _set_tile_pos, doc="""\
 The position of the player within the world to the nearest block.

 This property returns the position of the selected player in the
 Minecraft world to the nearest block, as a :class:`Vector` instance.
 You can assign to this property to reposition the player.
 """)

 @property
 def heading(self):
 """
 The direction the player is facing in clockwise degrees from South.

 This property can be queried to determine the direction that the player
 is facing. The value is returned as a floating-point number of degrees
 from North (i.e. 180 is North, 270 is East, 0 is South, and 90 is
 West).

 .. warning::

 Player heading is only supported on Raspberry Juice.
 """
 if self._connection.server_version != 'raspberry-juice':
 raise NotSupported(
 'cannot query heading on server version: %s' %
 self._connection.server_version)
 return float(
 self._connection.transact(self._cmd('getRotation')))

 @property
 def pitch(self):
 """
 The elevation of the player's view in degrees from the horizontal.

 This property can be queried to determine whether the player is looking
 up (values from 0 to -90) or down (values from 0 down to 90). The value
 is returned as floating-point number of degrees from the horizontal.

 .. warning::

 Player pitch is only supported on Raspberry Juice.
 """
 if self._connection.server_version != 'raspberry-juice':
 raise NotSupported(
 'cannot query pitch on server version: %s' %
 self._connection.server_version)
 return float(
 self._connection.transact(self._cmd('getPitch')))

 @property
 def direction(self):
 """
 The direction the player is facing as a unit vector.

 This property can be queried to retrieve a unit
 :class:`~picraft.vector.Vector` pointing in the direction of the
 player's view.

 .. warning::

 Player direction is only supported on Raspberry Juice.
 """
 if self._connection.server_version != 'raspberry-juice':
 raise NotSupported(
 'cannot query direction on server version: %s' %
 self._connection.server_version)
 return Vector.from_string(
 self._connection.transact(self._cmd('getDirection')),
 type=float)

[docs]class Player(BasePlayer):
 """
 Represents a player within the game world.

 Players are uniquely identified by their *player_id*. Instances of this
 class are available from the :attr:`~picraft.world.World.players` mapping.
 It provides properties to query and manipulate the position and settings of
 the player.
 """

 def __init__(self, connection, player_id):
 super(Player, self).__init__(connection, 'entity', player_id)

 def __repr__(self):
 return '<Player player_id=%d>' % self._player_id

 @property
 def player_id(self):
 """
 Returns the integer ID of the player on the server.
 """
 return self._player_id

[docs]class HostPlayer(BasePlayer):
 """
 Represents the host player within the game world.

 An instance of this class is accessible as the :attr:`Game.player`
 attribute. It provides properties to query and manipulate the position
 and settings of the host player.
 """

 def __init__(self, connection):
 super(HostPlayer, self).__init__(connection, 'player', None)

 def __repr__(self):
 return '<HostPlayer>'

 def _get_autojump(self):
 raise AttributeError(
 'reading autojump is not supported by the server')
 def _set_autojump(self, value):
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot change player settings on server version: %s' %
 self._connection.server_version)
 self._connection.send('player.setting(autojump,%d)' % bool(value))
 autojump = property(_get_autojump, _set_autojump, doc="""\
 Write-only property which sets whether the host player autojumps.

 When this property is set to True (which is the default), the host
 player will automatically jump onto blocks when it runs into them
 (unless the blocks are too high to jump onto).

 .. warning::

 Player settings are only supported on Minecraft Pi edition.

 .. note::

 Unfortunately, the underlying protocol provides no means of reading
 a world setting, so this property is write-only (attempting to
 query it will result in an :exc:`AttributeError` being raised).
 """)

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_modules/picraft/world.html

 Navigation

 		
 index

 		
 modules |

 		Picraft 0.4 documentation »

 		Module code »

 Source code for picraft.world

vim: set et sw=4 sts=4 fileencoding=utf-8:
#
An alternate Python Minecraft library for the Rasperry-Pi
Copyright (c) 2013-2015 Dave Jones <dave@waveform.org.uk>
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

"""
The world module defines the :class:`World` class, which is the usual way of
starting a connection to a Minecraft server and which then provides various
attributes allowing the user to query and manipulate that world.

.. note::

 All items in this module are available from the :mod:`picraft` namespace
 without having to import :mod:`picraft.world` directly.

The following items are defined in the module:

World
=====

.. autoclass:: World
 :members:

Checkpoint
==========

.. autoclass:: Checkpoint
 :members:

Camera
======

.. autoclass:: Camera
 :members:
"""

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

from .exc import NotSupported
from .connection import Connection
from .player import HostPlayer, Players
from .block import Blocks
from .vector import Vector, vector_range
from .events import Events

[docs]class World(object):
 """
 Represents a Minecraft world.

 This is the primary class that users interact with. Construct an instance
 of this class, optionally specifying the *host* and *port* of the server
 (which default to "localhost" and 4711 respectively). Afterward, the
 instance can be used to query and manipulate the minecraft world of the
 connected game.

 The :meth:`say` method can be used to send commands to the console, while
 the :attr:`player` attribute can be used to manipulate or query the status
 of the player character in the world. The :attr:`players` attribute can be
 used to manipulate or query other players within the world (this object can
 be iterated over to discover players)::

 >>> from picraft import *
 >>> world = World()
 >>> len(world.players)
 1
 >>> world.say('Hello, world!')
 """

 def __init__(
 self, host='localhost', port=4711, timeout=0.3,
 ignore_errors=False):
 self._connection = Connection(host, port, timeout, ignore_errors)
 self._player = HostPlayer(self._connection)
 self._players = Players(self._connection)
 self._blocks = Blocks(self._connection)
 self._height = WorldHeight(self._connection)
 self._checkpoint = Checkpoint(self._connection)
 self._camera = Camera(self._connection)
 self._events = Events(self._connection)

 def __repr__(self):
 return '<World players=%d>' % len(self.players)

 @property
 def connection(self):
 """
 Represents the connection to the Minecraft server.

 The :class:`~picraft.connection.Connection` object contained in this
 attribute represents the connection to the Minecraft server and
 provides various methods for communicating with it. Users will very
 rarely need to access this attribute, except to use the
 :meth:`~picraft.connection.Connection.batch_start` method.
 """
 return self._connection

 @property
 def players(self):
 """
 Represents all player entities in the Minecraft world.

 This property can be queried to determine which players are currently
 in the Minecraft world. The property is a mapping of player id (an
 integer number) to a :class:`~picraft.player.Player` object which
 permits querying and manipulation of the player. The property supports
 many of the methods of dicts and can be iterated over like a dict::

 >>> len(world.players)
 1
 >>> list(world.players)
 [1]
 >>> world.players.keys()
 [1]
 >>> world.players[1]
 <picraft.player.Player at 0x7f2f91f38cd0>
 >>> world.players.values()
 [<picraft.player.Player at 0x7f2f91f38cd0>]
 >>> world.players.items()
 [(1, <picraft.player.Player at 0x7f2f91f38cd0>)]
 >>> for player in world.players:
 ... print(player.tile_pos)
 ...
 -3,18,-5

 On the Raspberry Juice platform, you can also use player name to
 reference players::

 >>> world.players['my_player']
 <picraft.player.Player at 0x7f2f91f38cd0>
 """
 return self._players

 @property
 def player(self):
 """
 Represents the host player in the Minecraft world.

 The :class:`~picraft.player.HostPlayer` object returned by this
 attribute provides properties which can be used to query the status of,
 and manipulate the state of, the host player in the Minecraft world::

 >>> world.player.pos
 Vector(x=-2.49725, y=18.0, z=-4.21989)
 >>> world.player.tile_pos += Vector(y=50)
 """
 return self._player

 @property
 def height(self):
 """
 Represents the height of the Minecraft world.

 This property can be queried to determine the height of the world at
 any location. The property can be indexed with a single
 :class:`~picraft.vector.Vector`, in which case the height will be
 returned as a vector with the same X and Z coordinates, but a Y
 coordinate adjusted to the first non-air block from the top of the
 world::

 >>> world.height[Vector(0, -10, 0)]
 Vector(x=0, y=0, z=0)

 Alternatively, a slice of two vectors can be used. In this case, the
 property returns a sequence of :class:`~picraft.vector.Vector` objects
 each with their Y coordinates adjusted to the height of the world at
 the respective X and Z coordinates.
 """
 return self._height

 @property
 def camera(self):
 """
 Represents the camera of the Minecraft world.

 The :class:`Camera` object contained in this property permits control
 of the position of the virtual camera in the Minecraft world. For
 example, to position the camera directly above the host player::

 >>> world.camera.third_person(world.player)

 Alternatively, to see through the eyes of a specific player::

 >>> world.camera.first_person(world.players[2])

 .. warning::

 Camera control is only supported on Minecraft Pi edition.
 """
 return self._camera

 @property
 def blocks(self):
 """
 Represents the state of blocks in the Minecraft world.

 This property can be queried to determine the type of a block in the
 world, or can be set to alter the type of a block. The property can be
 indexed with a single :class:`~picraft.vector.Vector`, in which case
 the state of a single block is returned (or updated) as a
 :class:`~picraft.block.Block` object::

 >>> world.blocks[g.player.tile_pos]
 <Block "grass" id=2 data=0>

 Alternatively, a slice of vectors can be used. In this case, when
 querying the property, a sequence of :class:`~picraft.block.Block`
 objects is returned, When setting a slice of vectors you can either
 pass a sequence of :class:`~picraft.block.Block` objects or a single
 :class:`~picraft.block.Block` object. The sequence must be equal to
 the number of blocks represented by the slice::

 >>> world.blocks[Vector(0,0,0):Vector(2,1,1)]
 [<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
 >>> world.blocks[Vector(0,0,0):Vector(5,1,5)] = Block.from_name('grass')

 As with normal Python slices, the interval specified is `half-open`_.
 That is to say, it is inclusive of the lower vector, *exclusive* of the
 upper one. Hence, ``Vector():Vector(x=5,1,1)`` represents the
 coordinates (0,0,0) to (4,0,0). It is usually useful to specify the
 upper bound as the vector you want and then add one to it::

 >>> world.blocks[Vector():Vector(x=1) + 1]
 [<Block "grass" id=2 data=0>,<Block "grass" id=2 data=0>]
 >>> world.blocks[Vector():Vector(4,0,4) + 1] = Block.from_name('grass')

 .. _half-open: http://python-history.blogspot.co.uk/2013/10/why-python-uses-0-based-indexing.html

 .. warning::

 Querying or setting sequences of blocks can be extremely slow as a
 network transaction must be executed for each individual block.
 When setting a slice of blocks, this can be speeded up by
 specifying a single :class:`~picraft.block.Block` in which case one
 network transaction will occur to set all blocks in the slice. The
 Raspberry Juice server also supports querying sequences of blocks
 with a single command (picraft will automatically use this).
 Additionally, :meth:`~picraft.connection.Connection.batch_start`
 can be used to speed up setting sequences of blocks (though not
 querying).
 """
 return self._blocks

 @property
 def events(self):
 """
 Provides an interface to poll events that occur in the Minecraft world.

 The :class:`~picraft.events.Events` object contained in this property
 provides methods for determining what is happening in the Minecraft
 world::

 >>> events = world.events.poll()
 >>> len(events)
 3
 >>> events[0]
 <BlockHitEvent pos=1,1,1 face="x+" player=1>
 >>> events[0].player.pos
 <Vector x=0.5, y=0.0, z=0.5>
 """
 return self._events

 @property
 def checkpoint(self):
 """
 Represents the Minecraft world checkpoint system.

 The :class:`Checkpoint` object contained in this attribute provides the
 ability to save and restore the state of the world at any time::

 >>> world.checkpoint.save()
 >>> world.blocks[Vector()] = Block.from_name('stone')
 >>> world.checkpoint.restore()
 """
 return self._checkpoint

[docs] def say(self, message):
 """
 Displays *message* in the game's chat console.

 The *message* parameter must be a string (which may contain multiple
 lines). Each line of the message will be sent to the game's chat
 console and displayed immediately. For example::

 >>> world.say('Hello, world!')
 >>> world.say('The following player IDs exist:\\n%s' %
 ... '\\n'.join(str(p) for p in world.players))
 """
 for line in message.splitlines():
 self.connection.send('chat.post(%s)' % line)

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, exc_tb):
 self.connection.close()

 def _get_immutable(self):
 raise AttributeError(
 'reading immutable is not supported by the server')
 def _set_immutable(self, value):
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot change world settings on server version: %s' %
 self._connection.server_version)
 self._connection.send('world.setting(world_immutable,%d)' % bool(value))
 immutable = property(_get_immutable, _set_immutable,
 doc="""\
 Write-only property which sets whether the world is changeable.

 .. warning::

 World settings are only supported on Minecraft Pi edition.

 .. note::

 Unfortunately, the underlying protocol provides no means of reading
 a world setting, so this property is write-only (attempting to
 query it will result in an :exc:`AttributeError` being raised).
 """)

 def _get_nametags_visible(self):
 raise AttributeError(
 'reading nametags_visible is not supported by the server')
 def _set_nametags_visible(self, value):
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot change world settings on server version: %s' %
 self._connection.server_version)
 self._connection.send('world.setting(nametags_visible,%d)' % bool(value))
 nametags_visible = property(_get_nametags_visible, _set_nametags_visible,
 doc="""\
 Write-only property which sets whether players' nametags are visible.

 .. warning::

 World settings are only supported on Minecraft Pi edition.

 .. note::

 Unfortunately, the underlying protocol provides no means of reading
 a world setting, so this property is write-only (attempting to
 query it will result in an :exc:`AttributeError` being raised).
 """)

class WorldHeight(object):
 """
 This class implements the :attr:`~picraft.world.World.heights` attribute.
 """

 def __init__(self, connection):
 self._connection = connection

 def __repr__(self):
 return '<WorldHeight>'

 def __getitem__(self, index):
 if isinstance(index, slice):
 return [
 Vector(v.x, int(self._connection.transact(
 'world.getHeight(%d,%d)' % (v.x, v.z))), v.z)
 for v in vector_range(index.start, index.stop)
]
 else:
 return Vector(index.x, int(self._connection.transact(
 'world.getHeight(%d,%d)' % (index.x, index.z))), index.z)

[docs]class Checkpoint(object):
 """
 Permits restoring the world state from a prior save.

 This class provides methods for storing the state of the Minecraft world,
 and restoring the saved state at a later time. The :meth:`save` method
 saves the state of the world, and the :meth:`restore` method restores
 the saved state.

 This class can be used as a context manager to take a checkpoint, make
 modifications to the world, and roll them back if an exception occurs.
 For example, the following code will ultimately do nothing because an
 exception occurs after the alteration::

 >>> from picraft import *
 >>> w = World()
 >>> with w.checkpoint:
 ... w.blocks[w.player.tile_pos - Vector(y=1)] = Block.from_name('stone')
 ... raise Exception()

 .. warning::

 Checkpoints are only supported on Minecraft Pi edition.

 .. warning::

 Minecraft only permits a single checkpoint to be stored at any given
 time. There is no capability to save multiple checkpoints and no way of
 checking whether one currently exists. Therefore, storing a checkpoint
 may overwrite an older checkpoint without warning.

 .. note::
 Checkpoints don't work *within* batches as the checkpoint save will be
 batched along with everything else. That said, a checkpoint can be used
 outside a batch to roll the entire thing back if it fails::

 >>> v = w.player.tile_pos - Vector(y=1)
 >>> with w.checkpoint:
 ... with w.connection.batch_start():
 ... w.blocks[v - Vector(2, 0, 2):v + Vector(2, 1, 2)] = [
 ... Block.from_name('wool', data=i) for i in range(16)]
 """

 def __init__(self, connection):
 self._connection = connection

 def __repr__(self):
 return '<Checkpoint>'

[docs] def save(self):
 """
 Save the state of the Minecraft world, overwriting any prior checkpoint
 state.
 """
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot save checkpoint on server version: %s' %
 self._connection.server_version)
 self._connection.send('world.checkpoint.save()')

[docs] def restore(self):
 """
 Restore the state of the Minecraft world from a previously saved
 checkpoint. No facility is provided to determine whether a prior
 checkpoint is available (the underlying network protocol doesn't permit
 this).
 """
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot restore checkpoint on server version: %s' %
 self._connection.server_version)
 self._connection.send('world.checkpoint.restore()')

 def __enter__(self):
 self.save()

 def __exit__(self, exc_type, exc_value, exc_tb):
 if exc_type is not None:
 self.restore()

[docs]class Camera(object):
 """
 This class implements the :attr:`~picraft.world.World.camera` attribute.
 """

 def __init__(self, connection):
 self._connection = connection

 def __repr__(self):
 return '<Camera>'

 def _get_pos(self):
 raise AttributeError(
 'reading camera position is not supported by server')
 def _set_pos(self, value):
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot position camera on server version: %s' %
 self._connection.server_version)
 self._connection.send('camera.mode.setFixed()')
 self._connection.send('camera.setPos(%d,%d,%d)' % (value.x, value.y, value.z))
 pos = property(_get_pos, _set_pos, doc="""\
 Write-only property which sets the camera's absolute position in the
 world.

 .. note::

 Unfortunately, the underlying protocol provides no means of reading
 this setting, so this property is write-only (attempting to query
 it will result in an :exc:`AttributeError` being raised).
 """)

[docs] def third_person(self, player):
 """
 Causes the camera to follow the specified player from above. The
 player can be the :attr:`~World.player` attribute (representing the
 host player) or an attribute retrieved from the :attr:`~World.players`
 list. For example::

 >>> from picraft import World
 >>> w = World()
 >>> w.camera.third_person(w.player)
 >>> w.camera.third_person(w.players[1])
 """
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot position camera on server version: %s' %
 self._connection.server_version)
 if isinstance(player, HostPlayer):
 self._connection.send('camera.mode.setFollow()')
 else:
 self._connection.send('camera.mode.setFollow(%d)' % player.player_id)

[docs] def first_person(self, player):
 """
 Causes the camera to view the world through the eyes of the specified
 player. The *player* can be the :attr:`~World.player` attribute
 (representing the host player) or an attribute retrieved from the
 :attr:`~World.players` list. For example::

 >>> from picraft import World
 >>> w = World()
 >>> w.camera.first_person(w.player)
 >>> w.camera.first_person(w.players[1])
 """
 if self._connection.server_version != 'minecraft-pi':
 raise NotSupported(
 'cannot position camera on server version: %s' %
 self._connection.server_version)
 if isinstance(player, HostPlayer):
 self._connection.send('camera.mode.setNormal()')
 else:
 self._connection.send('camera.mode.setNormal(%d)' % player.player_id)

 © Copyright 2015 Dave Jones.
 Created using Sphinx 1.3.1.

_static/comment.png

_images/vector8.png

_images/quick2.png

_images/vector2.png

_images/quick5.png

_images/vector11.png

_images/vector7.png
X.rotate(180, about=X+Y)

_images/quick1.png

_images/block_faces.png

_images/vector1.png

_images/quick4.png

_images/vector9.png

_images/vector3.png

_images/vector12.png

_images/vector10.png
p.magnitude =

_images/vector4.png

_images/quick3.png

_images/vector6.png
2(180, about=Y)

.rotate(90, about=X)

_static/ajax-loader.gif

_images/vector5.png

_static/logo.png

